

Accessible Access 2003

Accessible
Access 2003

Mark Whitehorn and Bill Marklyn

13

Mark Whitehorn
Information & Library Services, University College Worcester,
Henwick Grove, Worcester WR2 6AJ, UK

Bill Marklyn
OceanPark Software Corporation, 2332 E Aloha Street
Seattle WA 98112, USA

British Library Cataloguing in Publication Data
Whitehorn, Mark, 1953-

Accessible Access 2003
1.Microsoft Access (Computer file) 2.Database management
I.Title II.Marklyn, Bill, 1960-
005.7'565

ISBN-10: 1852339497

Library of Congress Control Number: 2005923748

Apart from any fair dealing for the purposes of research or private study, or criticism or
review, as permitted under the Copyright, Designs and Patents Act 1988, this publication
may only be reproduced, stored or transmitted, in any form or by any means, with the prior
permission in writing of the publishers, or in the case of reprographic reproduction in
accordance with the terms of licences issued by the Copyright Licensing Agency. Enquiries
concerning reproduction outside those terms should be sent to the publishers.

ISBN-10: 1-85233-949-7
ISBN-13: 978-1-85233-949-4
Springer Science+Business Media
springeronline.com

© Mark Whitehorn 2005

The use of registered names, trademarks etc. in this publication does not imply, even in the
absence of a specific statement, that such names are exempt from the relevant laws and
regulations and therefore free for general use.

The publisher makes no representation, express or implied, with regard to the accuracy of
the information contained in this book and cannot accept any legal responsibility or liability
for any errors or omissions that may be made.

Typeset by Ian Kingston Editorial Services, Nottingham
Printed in the United States of America
34/543210 Printed on acid-free paper SPIN 11372233

This book is dedicated to

Pamela Mary Barham

(née Moulton),

who always meant to write a book,

but spent too much time on other people

ever to get around to it.

Acknowledgements

Top of the list has to be Mary Whitehorn, who contributed so much that by
rights she should have been listed as another author, but she declined on the
grounds of modesty (now that is rare in a writer).

Also up there are those ever-cheerful people at Springer Verlag – Beverley
Ford, Rebecca Mowat and Sally Tickner who all worked hard behind the scenes
and provided the drive and enthusiasm.

And finally, grateful thanks are due to the Three Crowns at Ullingswick. This
tranquil establishment (with superb food) was where we planned the early
stages of the project. Of course, as work progressed, further restorative visits
were unavoidable....

vii

Contents

Acknowledgements vii

Contents ix

Preface to the second edition? xvii

Part I – Introduction 1

Chapter 1 Introduction 3

Why should you buy this book? 3
So what do we cover? 5
What don’t we cover? 5
How do we work? 6
Who are you? 6
What do you have? 7
Definitions 7
Sample files 8
What’s in a name? 9
Disclaimer 10
The ‘d’ word 10
Conventions and layout 10

Part II – Getting started 13

Chapter 2 The Database wizard – or not 15

First steps 16
The database window 17

ix

Tables – the fundamental building blocks 18
Forms – and their function 20
Queries – questions, questions, questions... 22
Reports – printed output from a database 23
A brief summary of the big four 24

Chapter 3 Tables – for storing your data 25

Using the Table wizard 25
Building a table by entering data 31
Adding records 33
Field names 34
Records and fields revisited 34

Chapter 4 Queries – finding data 36

Why you need to use queries 36
What is a query? 36
Using the Query wizard 37
The Query Design tool 39
Finding the right records 44
Saving data with a make-table query 53
Summary 55

Chapter 5 Forms – viewing and entering data 56

Really rapid form creation 57
Using the Form wizard 59
Creating different types of form 60
Calculated values 60
Forms performing calculations 62
Querying from a form 68
Multiple forms per table 68
Summary 68

Chapter 6 Reports – printing your data 69

Creating a report using the Report wizard 69
Printing a report 74

x

Contents

Summary 75

Chapter 7 The story so far 76

Part III – Creating hand-crafted databases 79

Chapter 8 Exploring tables in more depth 81

What more could you possibly need to know? 81
Primary keys 82
Data types 83
Summary so far 99
Controlling data entry 100
Input masks – the background 101
Investigating the main properties of fields 105
Choosing the right data type means leaner, faster databases... up to a
point 114
Summary 115
Not required on voyage 115
More on input masks 115
And now more about the properties of a field... 117

Chapter 9 Tapping the power of Access queries 120

Queries are much more powerful than they first appear 120
The main types of query 121
Using a query to perform calculations 144
Can you edit the data in an answer table? 147
Refining queries to home in more precisely upon records 148
Closure – and making further use of queries 154
Summary 158

Chapter 10 Forms again – design 159

Designing your form 159
Other ways of creating forms 170
AutoForm: PivotTable 174
The PivotTable wizard 185

xi

Contents

AutoForm: PivotChart 185
The Chart wizard 190
Summary 193

Chapter 11 Forms again – controlling data entry 194

Data validation 194
A tiny bit of theory 194
Form controls introduced 195
Overview of controlling form controls 196
Types of form control 199
Further controls 218
Updating properties 223
Summary 225

Chapter 12 Reports again – customizing printed output 226

Report types 226
The Report wizard again 227
The Label wizard 231
The Chart wizard 233
Building a customized report 233
What else can you do on a report? 235
Formatting your report 243
Summary 243

Chapter 13 Where are we now? 244

Single tables for simple databases 244
The value of single table databases 244
Increasing complexity – most data isn’t that simple 244

Part IV – More complex databases 247

Chapter 14 Multiple table databases 249

More is better! 249
Using multiple tables to store your data 249

xii

Contents

Deciding what data goes into which table 251
Using the Table Analyzer wizard 255
The manual solution 265
Summary 266

Chapter 15 Tables – making multiple tables work together 267

Primary keys 268
Joins – and foreign keys 269
Joining tables 271
How joins affect tables and forms 275
Indexing 276
Join types 277
Editing joins 279
Deleting joins 280
Completing the manual solution 280
Summary 280

Chapter 16 Tables – a complete multi-table database 281

Data – divide and conquer 281
Building the tables 282
Adding primary keys 284
Identifying foreign keys 284
Joining the tables 285
Objects 286
Lookup fields – handle with care (if at all) 286
Summary 291

Chapter 17 Queries – finding data from multiple tables 293

Check out the data 293
Bringing it all back together 293
Multiple table queries 293
The effect of joins on queries 295
Basing a query on a query 301
Summary 302

xiii

Contents

Chapter 18 Forms – your interface to multiple tables 303

Forms and functions 303
Subforms 303
Another form based on multiple tables 308
More form controls 309
Summary 324

Chapter 19 Reports – printing data from multiple tables 325

Basing reports on queries 325
Adding a watermark 327
Summary 328

Chapter 20 Producing a user interface for your database 329

Not just a pretty face 329
Design considerations 329
Form control without programming 331
Designing a user interface 332
Building an interface 332
A seamless whole 338
A far from perfect UI 339
Summary 340

Chapter 21 Data Access Pages 341

Data Access Pages – do you even need them? 341
Stopping here makes good sense... but it’s also boring 343
What’s a Data Access Page? 343
AutoPage 344
The record navigation toolbar 346
Enhancing an AutoPage 348
Page Design view 350
Hyperlink control 352
Image Hyperlink control 355
Bound Span control 358
The Page Wizard 359
Controlling access 360

xiv

Contents

A few more controls 360
Summary 362

Chapter 22 You mean there’s even more? 364

Modules and macros 364
Application development 365
Projects 368
Object dependencies 369
File formats 371
Summary 372

Index 373

xv

Contents

Preface to the second edition?

Our first book on Access was entitled Accessible Access 2000. Given that this one
is all about Access 2003, we clearly had to change the title. As soon as you
change the title of a book, you get a new ISBN and technically it’s a new book.
However, since the original book seemed to be popular with its readers, we
didn’t want to change a formula that worked. So in truth this is essentially a
second edition of that original book, updated for Access 2003.

Both of us seriously dislike technical books that are simply re-badged for newer
versions of the software without being properly re-written where appropriate.
With that in mind we have reread every word. We have checked every single
example to make sure that they all still work and are all still relevant to Access
2003. We have retaken every screen shot in Access 2003 to make sure that they
all match what you should see when using the product.

We have also added entirely new material on pivot tables/charts, Data Access
Pages, object dependencies and file formats. Despite these additions, we hope
we have managed to stick to the original ethos of the book, which was to
concentrate on the core parts of Access, rather than drilling into too much
detail.

xvii

Part I

Introduction

Chapter 1

Introduction

This is where we try to convince you to buy this book, tell you what it tries to do,
define a few terms and generally set the scene – all of which makes this more
like an introduction than a first chapter, but no-one reads introductions so we
called it a chapter. If you have already bought the book and know what it does,
feel free to skip to Chapter 2 where the action starts.

Why should you buy this book?

There are many Access books on the market, why should I buy this one? Does it have more
information than any other book?

Errr, no, it actually has less than the big reference books you’ll also find on the
shelf.

So, is it very cheap?

Well, it isn’t as expensive as some but, no, it isn’t particularly cheap either.

To be brutally frank, you’re not doing a great job of selling this to me.

Right, time for the hard sell.

Bill worked for Microsoft as the Development Manager for the first three
versions of Access. I (Mark) work as a database consultant, teach database
theory and practice at two Universities and have written the UK Personal
Computer World’s database column for more than ten years.

We met (at a database conference, not unreasonably, given our interests) in the
summer before Access 1.0 was launched and found that we shared similar
views on how databases should be designed and built. Since then we have
written a book together about the relational model that underlies Access and all
other relational database systems (see below for the inevitable plug). But why
write a book about Access itself when there are already so many around?

3

Well, since Bill was in charge of the product’s development, it was fair to
assume that we had the technical side reasonably well covered. I have been
teaching people (students and IT professionals) to use Access since version 1.0
appeared and found that teaching Access was very different from teaching a
package like Word.

When you teach people how to use Word, you find that you can spend most of
your time concentrating on how to use the features that Word offers. You don’t
need to tell them what a letter is, or a paragraph, or italic font; they already
know all that.

Access is a tool that lets you create databases and, in my experience, most
people, including the IT professionals, who come on an Access course have
never built a database before. (The people who have experience with building
databases often simply pick up Access and start work with it, so I rarely see
them.)

The people who do come on courses tend to know that databases are used to
store data but the detail beyond that is usually hazy. So I found that I needed to
teach them about the features that Access offers and at the same time teach
them how use that knowledge to create a database. To give a concrete example,
I would show them how to build a table and also tell them what a table did
within a database. And when I taught them how to build a form I also told them
how the form would be used in a database and how forms could interact with
tables.

So when Bill and I planned this Access book, we had two very specific aims. We
wanted it to tell you:

• how to get started with Access as rapidly as possible.
• how to use a particular set of features effectively and also why those features

are important.

Ah, but which features to show you? We were also aware that Access is, to coin
a phrase, a very feature-rich product. This is vital because building and
managing databases can become a complex operation. But at the start it doesn’t
have to be. We have also endeavored to focus on the parts that are funda-
mental. After all, you are going to have to learn not just how to drive Access but
also what all of the components are for. You don’t want to be sidetracked right
at the start into learning features that you may not need for years; indeed, that
you may never need.

So one really strange end result of our design for the book is that we hope that
you’ll buy it, not for all of the Access detail that we have put in, but for all the
bits we have left out. Considering that Bill was instrumental in designing
Access, we really could have stuffed this book with a mass of information.

4

1 Introduction

Instead we tried very hard to use my experience of teaching Access to describe
just the core of Access – enough information to get you up and running but
with no extraneous detail.

But once you have finished this book and you want to go on, for example, to
become a professional Access developer, how do you find all of those extra bits
that we don’t tell you? You buy one of those great 1000+ page reference books
that are available; there are some very good ones out there. So why not simply
buy one of those now and save the cost of this one? Because this one will give
you the framework that you need in order to use the information that those
books contain.

So what do we cover?

We start by introducing the basic components of a database – tables, forms,
queries and reports. We show you how to create simple examples of each using
the Access wizards where appropriate. Then we cover each of them again, only
this time we show you how to hand-build them so that you can achieve more
than you can using just the wizards.

By that stage you should be comfortable with creating a simple database which
stores its data in a single table. However, ‘real-world’ databases typically use
multiple tables. So we show you why you need multiple tables and then run
through those four components one more time, showing you how they can be
used to create really effective multi-table databases.

What don’t we cover?

In this book we have tried, as we said, to act as intelligent filters. A computer
manual gives you every bit of information that you could possibly ever need;
we are trying to give you only the most commonly used information. As a good
example, Access provides so-called Input Masks that you can use to control
what information can be placed in a database. Input masks can be composed of
three different parts. However, the last two are optional and are rarely used in
practice, so when we tell you about input masks we only cover the first part in
any detail. This isn’t because we don’t know about the last two or because they
are never used. It is simply that you can get 95% of the functionality of an input
mask simply by understanding the first element. We think that the trade off is a
good one, and that you can become productive much more rapidly. Another
example is that Access offers a facility called globally unique identifiers. These

5

1 Introduction

are useful when you build databases in which some users will want to work on
data when they are disconnected from a shared database – for example, trav-
eling sales people. It is a really useful feature, but not one you are likely to build
into your first couple of databases. So we tell you about it but don’t go into the
details.

We also don’t cover the more advanced features like programming Access or
using it to generate databases outside an intranet. We also don’t cover, more
than is absolutely necessary, the theory that underlies database design and
operation. This is a practical book about how you use Access. However, and
here is that blatant plug, if you find that you want to know more about the
underlying theory and database design in general, take a look at Inside Rela-
tional Databases, by Whitehorn and Marklyn, published by Springer.

In addition, as mentioned above, I’ve been writing a database column in
Personal Computer World for well over ten years. I’ve rewritten material from
that into a database problems/solutions cookbook. Details are on the website:
www.MarkWhitehorn.com.

How do we work?

As with our other books, I tend to write most of the actual words while Bill
provides a wealth of information and enthusiasm, proof reading and generally
tends to keep me on track. Since only one of us is in charge of the keyboard at
any one time it often feels more natural to write in the first person – ‘I prefer
this’, ‘I recommend that’ and so on. Since both of us see the text, you can
assume that we both agree in general with the sentiments expressed, although
paradoxically it may not always exactly be true. Consider the statement ‘I get
paid for developing Access applications and use wizards whenever I think that
using one will save me time.’ I (Mark) do indeed get paid for developing Access
applications, Bill doesn’t – he got paid for developing Access itself – but we both
agree that wizards are a good place to start. At other times, we’ll use ‘we’ when
it happens to run off the keyboard more naturally, for example, ‘we have
included on the CD-ROM a file called...’.

Who are you?

You are a reasonably competent Windows and Office user who has no experi-
ence with Access. You want to be able to create and use a stand-alone database
to store and track information.

6

1 Introduction

Making these assumptions means we don’t waste time (and words) going into
endless detail about common Office operations like opening and saving files.
Nor do we cover components that are common to both Office and Access, like,
for instance, Graph.

So if you’ve already used Access (or another database system) to create
multi-table databases that work effectively then, much as we’d like you to buy
this book, we’d encourage you to buy one of the more detailed books.

What do you have?

We also presume you have Access installed on your computer. These days, the
installation process is just another Windows task and we won’t be walking you
through it. We also assume that you have installed all of Access; if not, we
recommend that you go back and install the missing bits. The only reason we
say this is so that we don’t have to keep on checking that you have installed the
bits necessary for the different operations we show you.

Definitions

We don’t want to load you down with lots of techno-babble but it is useful if we
define a couple of terms before we start.

Database

A database is simply a collection of data. Nowadays the term tends to be used
about computerized systems but the old cards which were used to classify and
locate books in a library are a good example of a non-computerized database.

Relational DataBase Management System (RDBMS)

A database is a collection of data – perhaps a list of your customers, their
addresses, fax numbers and so on. In order to keep the data in your database
under control, you need software known as a DBMS. The DBMS is to a database
what a word processor is to a letter. The former is the controlling software, the
latter the data that it manipulates. Access is a DBMS. In fact, it is also a Relational
DBMS, hence the acronym. The word Relational simply refers to the way in
which the data in the database is organized and since almost all modern DBMSs
are relational the R is almost superfluous but is still commonly used.

7

1 Introduction

Database application

So, you can use Access (an RDBMS) to create one or more databases. You will
also hear people talking about using Access to create ‘database applications’.
The distinction between a database and a database application is a relatively
fine one. Technically a database is simply a collection of information. As soon as
you start using Access (or any other RDBMS) to create a user interface that
allows people to interact with the data, then you are creating a database appli-
cation. In practice, the database and the database application tend to be created
together in Access so the difference is not very apparent. However, it is more so
with other RDBMSs, such as Oracle.

User

In recent times this unassuming word has, in certain circles, gained a pejorative
flavor. It’s a word we use throughout this book and always for its dictio-
nary-defined meaning. There are times when we have to differentiate between
you, the person using Access to create a database application, and those people
who will make use of your completed application. ‘User’ is the obvious and
appropriate word, and it is never used to imply any negative connotations.

Sample files

The CD supplied with this book has a folder called AccSamp. Within that folder
is a set of files that are the example files that we generate and use in the book.
We suggest that you copy the entire folder to a convenient location on your
hard disk.

On our first book we provided a CD-ROM which had a batch file to move the
files. This was, we discovered, a big mistake. Some people really don’t like
having files automatically placed on their disks, they like to choose where the
files go. This time we are playing safe and letting you do it, so move the entire
folder to the location of your choice. Since the files are stored on a CD-ROM
they will be read only, even when they are moved. So select all of the files in the
folder on your hard disk (highlight one of the files and press Ctrl-A), right click
on them, select ‘Properties’ and deselect the ‘Read Only’ option.

All the MDB file names start with chap and the chapter number. For many of
the chapters, you’ll find files called chapXstart.mdb and chapXend.mdb:
these are the files with which you should start work if you’re following the
examples and the file you should end up with once the example is complete.
Sometimes there are intermediate files within a chapter; for instance, in
Chapter 12 there are four files:

8

1 Introduction

chap12start.mdb

chap12reports.mdb

chap12start2.mdb

chap12end.mdb

Occasionally there is no chapXstart file in a chapter where you start work
from scratch and work towards a completed example.

What’s in a name?

When it first appeared, Access was revolutionary in many ways – one was that
it allowed you to use long names for objects like tables, forms etc. It also allowed
you to include spaces in the names. This is great because it enables you to give
tables meaningful names like ‘Orders received’. It was also a major step
forward compared to the PC-based DBMSs of the day such as dBASE which
only allowed eight characters and no spaces. However, as Access applications
were developed, an unexpected problem occurred. Many such applications
became so successful that they were upgraded to client–server systems. (These
are larger, more complex database applications where the data is held centrally
and many people can use it at the same time. A typical example of client–server
database software is a Microsoft product called SQL Server, another is IBM’s
DB2.) Sadly most of these client–server systems didn’t, and some still don’t,
support long complex names like this. The result was that considerable work
was often necessary to upsize these Access applications.

The situation is now considerably better for two reasons.

• For a while, Access has allowed you to create applications that are, right from
the start, SQL Server compatible – so that if you ever do want to upsize the
application to SQL Server the process is trivial. This is done using ‘Projects’
which are discussed briefly in Chapter 22.

• Version 7.0 (and above) of SQL Server does support long names and even
spaces in those names (though other client–server systems and earlier ver-
sions of SQL Server do not.)

However, suppose you develop an Access application in the normal way (that
is, you do not use a project file) and then you later discover that you want to
move it to a client–server system. It may also turn out that you don’t want to use
SQL Server as the client–server system, in which case any long names and/or
those with spaces are going to be a pain. So, our general advice is to keep names
shorter rather than longer and not to use spaces. On the other hand, if you are

9

1 Introduction

developing a simple addressing database that you know will never be upsized,
feel free to use any combination of characters and spaces that Access permits.

For clarity’s sake we have chosen to ignore our own advice in this book and
have used rather long names. This book is primarily a teaching aid and we felt
that the gain in making things easier to follow was worthwhile.

Disclaimer

We’ve made every effort to ensure that the material in this book is accurate but
we cannot guarantee that it works perfectly or that we haven’t made mistakes
(we are only human). If you find a problem with the book we’d love to know, so
please tell us at www.MarkWhitehorn.com. You can also check out that site to
see if we have posted any fixes for the material herein.

As a general rule, always work with a copy of your data when you’re experi-
menting, developing or just simply playing. It’s the simplest way to avoid prob-
lems and furthermore, knowing that you can’t do any damage gives you
greater confidence to experiment and learn by both your successes and your
mistakes.

Lastly we’d like to say that the data in our examples is fictional and any simi-
larity to any people in the real world is entirely coincidental... apart from some
of our friends whose names do occasionally occur. But we don’t expect them to
sue us.

The ‘d’ word

Data: singular or plural? We know, correctly speaking, that datum is singular
and data is plural. We also know that it sounds funny when used that way so
we’ve gone with common usage and, with apologies to purists, merrily write
‘data is’ throughout.

Conventions and layout

This is a practical book so we continually tell you to type material into Access.
Sometimes it seems clearer to use single inverted commas to outline exactly
what we mean – for example, on page 50:

Thus ‘car???’ will find Carmel...

10

1 Introduction

At other times we have left them out because they seem superfluous. As a
general rule Access doesn’t expect single inverted commas around the informa-
tion that you type in.

Most people don’t read books from cover to cover; so we have occasionally
repeated important points in different sections. To avoid too much repetition
we have also sometimes cross-referenced between chapters. Either technique is
irritating if carried out to excess, so we have tried to strike a reasonable balance.

11

1 Introduction

Part II

Getting started

Chapter 2

The Database wizard – or not

Access, like other Microsoft products, uses wizards to simplify and speed up
commonly performed tasks. Wizards are an excellent way to learn how to com-
plete a new task but they’re not only there to help novices. Professional devel-
opers will often use wizards when appropriate, because they are the fastest way
to achieve a basic end result. So, for example, I typically use the Form wizard to
create a form because it does most of the ground work for me and then I modify
it and make the changes I want using the Design view. On the other hand, I
usually build queries from scratch without the query wizard because queries
are so easy to build. The bottom line is that you shouldn’t feel the need to apolo-
gize for using a wizard if someone catches you doing it. I get paid for develop-
ing Access applications and use wizards whenever I think that doing so will
save me time.

Access provides a set of Database wizards which can be used to generate
complete, working database applications. Since you are, presumably, reading
this book because you want to be able to create complete, working database
applications, it seems totally perverse not to start by showing you those wizards
– but that’s what we are going to do. We think these wizards are great and
heartily recommend that you have a look at them and see what they can do.
The only problem with using them lies, not in the wizards themselves, but in
the diversity of databases. No matter how many questions a wizard asks you, it
cannot really be expected to generate exactly the database you need. Just like
the wizards for other tasks in Access, the best it can usually do is to generate a
sort of ‘first approximation’ to what you want. That’s fine, but it means that ulti-
mately you are still going to need to know how to use the rest of Access in order
to fine tune it. So we’ll leave you to play with these wizards at your leisure and
get started straight away with the ‘rest’ of Access.

15

First steps

In the next chapter we’ll get you to start building a database but in order to
familiarize yourself with the components in Access we recommend that you
start with one that already exists. We have included one on the CD-ROM called
chap2.mdb. This is a database of names and addresses, a computerized
address book if you like, which seems a reasonable place to start. The file is
located in the AccSamp folder (see Chapter 1). Locate that file and double click
on it. At this point you may get a message like this one:

To the best of our knowledge and belief, there are no ‘unsafe expressions’ in
any of the files we supply on the CD-ROM, so you can probably click on ‘Yes’ to
continue loading the file. Nevertheless it is a good idea to apply the service pack
described by following the instructions in the dialog box.

16

The Database wizard – or not

However, even after you have applied it, you will still get a message like this
one when you try to open files:

To the best of our knowledge and belief, there is no code intended to harm your
computer in any of the files we supply on the CD-ROM. Microsoft is currently
taking an extremely conservative approach and will warn you about this every
time you open a file, even one that you have created on your machine.

Click Open if you want to go ahead and open the file.

The database window

This is what you should see: it’s the database window for the Addresses data-
base. It shows you all the various components of the database and lets you
reach them.

The window has two gray title buttons on the left-hand side labeled Objects
and Groups. In the screen shot above the Objects button has been clicked so

17

2 The Database wizard – or not

that it shows seven tabs down the left hand side – Tables, Queries etc. Each of
these relates to a type of object in Access.

� The computing world seems to have adopted the word ‘object’ as its own; the word sounds so
wonderfully decisive and exact. In some areas of computing, particularly programming, the
word does have a precise meaning. However, we are using it to mean ‘thing’, but we dare not
use that word for fear of sounding too lax and unprofessional.

The first four object types (reading from top to bottom) are the four main com-
ponents of a database:

• Tables
• Queries
• Forms
• Reports

In the screen shot above, the Tables tab is active.

� For most of this book we’ll concentrate on these four but, just for completeness, we do ex-
plain the other three in the last two chapters.

We’ll illustrate each of the top four components using the address book
database, starting with tables.

Tables – the fundamental building blocks

Click the first tab, Tables, if it isn’t already active. At the top of the contents pane
there are three options with an Access key symbol.

These identify various actions that you can perform from here, all concerned
with creating new tables. We’ll ignore these for the moment.

Below this is a symbol that indicates a table.

There’s one of these, called Addresses.

18

2 The Database wizard – or not

�

�

Highlight the Addresses table and click Open, or double click on the table
name. This is what you’ll see.

The data in the Addresses table is set out in a grid, a method of displaying in-
formation clearly that’s commonly used for sports scores, exchange rates, what-
ever. This view of a table is referred to as the Datasheet view.

Databases are all about storing data and tables are the basic containers that all
databases use for holding data. The data in a table can be presented to us in a
variety of ways but when you look directly at the data in a table it is typically
presented like this, as a grid of intersecting rows and columns. All areas of
expertise have their own terminology and databases are no exception, so you
will find in practice that rows of data are also referred to as ‘records’. Both terms
are commonly used; people will say ‘How many rows are there in that table?’
and also ‘How many records are there...’. In the same way columns of data are
also called ‘fields’.

Records and fields

Record and field are important database terms.

A record, in the context of an address database, is all the informa-
tion you’ve gathered about where one person lives. A record com-
prises all the data about one entry in a table. If you had a sales
database, each record would be likely to contain information about
a single sales transaction.

A field equates to each piece of information you store in your data-
base: last names, first names, phone numbers and so on. Each of
these distinct types of information is stored in a separate field.

There’ll be more on fields and records in Chapter 3.

19

2 The Database wizard – or not

You can navigate through the data shown here in several ways. Firstly you can
move the cursor around the data in the table either with the mouse or with the
cursor keys. (You can also use the navigation tools at the bottom of the window
but we’ll illustrate these in just a moment).

� The title bar that heads every Access window and dialog box can be a useful clue to what
you’re seeing. The bar in the previous screen shot says ‘Addresses: Table’, identifying the
object type (Table) and giving its name (Addresses).

In practice, people mostly view the data in a database with a form (see below)
but occasionally looking at the table as we have done here helps give an over-
view of the data.

Click the Close button to return to the database window.

Forms – and their function

Click on the Forms tab (we’ve skipped the Queries tab but we’ll be back) where
there is one form called Addresses. This is the icon that identifies a form:

Double click on Addresses and you’ll see this.

This is a form: it looks similar to the many paper forms that cross our paths.
Forms are the main way in which users of the database interact with the data.

20

2 The Database wizard – or not

�

They usually present the data in a more user-friendly fashion than the table
view. Forms can also be attractive to look at, a factor which is surprisingly
non-trivial. Users are almost invariably happier to interact with a database
through well-designed forms that look good and have their components set out
neatly and clearly. Good form design can make users more efficient and give
greater satisfaction. If that doesn’t convince you that form design is important –
remember that happy users are more likely to generate repeat business for da-
tabase designers...

You can build many forms for a single database, indeed you can build many
forms for any given table within a database. Why would you want to do that?
Well, for a start, any given form doesn’t have to show all the fields in a database.
If you wanted to scan a table to find a contact’s fax number, you could use a
form which showed just the people’s names and fax numbers. This would al-
low you to concentrate on the job without the distraction of the other fields. An-
other reason might be that in a business application, personnel staff could use a
form showing all of an employee’s data except medical records and the medical
officer’s form would show just the medical records. Other employees could use
a form showing limited information, like phone number at work and email ad-
dress. It is also possible to restrict access to these forms so that only the medical
officer can see the form that shows the medical data.

Furthermore, a form can be based upon a query: the query will sort out a subset
of the information stored in the database and a form based upon that query will
provide user-friendly access to that information. The user of the form is thus
saved from having to expend energy looking through irrelevant data.

So forms can be tailored to the needs of those using them, both in terms of con-
tent and of style. There can be data entry forms, forms for editing data and for
simply displaying it. In some companies, telesales staff might appreciate a jazz-
ier style than the executive officers. Not that we wish to imply, for even a second, that
EOs are boring (after all, they are also concerned with the repeat business process...)

You can move around the records using the controls which appear at the bot-
tom of all Access database forms. The small buttons show VCR-type control
symbols.

• The single arrowheads move you one record at a time backwards and for-
wards through the database.

• The arrowheads with a vertical bar alongside take you to the first or last re-
cord in the database.

• The arrowhead with an asterisk alongside takes you to a new blank record
where you can enter a new set of details.

21

2 The Database wizard – or not

• The box sandwiched between these controls shows you the number of the
current record.

• Just to the right of these controls is the total number of records in the
database.

Try moving through records one by one using these controls (it won’t take you
long as there are only twelve records in the sample data) and then jump back to
the beginning. You can also move around the form’s fields with the arrow keys
on your keyboard. The Tab key works too: it steps through the fields and, on
reaching the last field in a record, it moves to the first field of the next record.

Queries – questions, questions, questions...

A query is, as the name suggests, a question that you ask of your database.
When you ‘run’ the query, Access searches for the data you have requested and
presents it to you in a table. We have built a query called LondonDetails that
looks for records in the table that relate to people who live in London. The
query has also been designed only to supply the data from four of the 12 fields
in the table.

Click the Close button to leave the form and click the Queries tab back in the
database window and double click on LondonDetails. Queries are identified by
an icon looking like this:

The answer appears in what is, with perfect logic, called an answer table.

22

2 The Database wizard – or not

Think of a query as being a stored question. The very act of double clicking it
sets the question in motion and what you see is the result, or the answer, that
the query has found. The reason we suggest that you always think of queries in
this way (as a question rather than as a fixed answer) is simple. If you change
the data in the table and then re-run the query, you will get a different answer
table (assuming that you have, in this case, added a person who lives in
London).

Queries are amazingly, mind-bogglingly useful. They take the raw data in a data-
base and turn it into hard information. They’re not only for locating information
in the database but also for discovering trends in the data. A query can find all the
sales of yellow telephones made over the last six months. Indeed, if it was more
helpful for you, the query could be constructed to show you the sales per month
for the last six months so that you could see if sales are booming or fading.

Reports – printed output from a database

Click on the Reports tab to see what reports the Addresses database contains.
Double click on the report called AddressesByLastName. It has an icon like this:

and the report looks like this:

23

2 The Database wizard – or not

This is a simple report (in which only the top, showing the first six records, is
visible in the screen shot above) that lists all contacts in the database, stacked in
alphabetical order by last name. Alphabetical lists of club members, employees,
customers or items for sale are used in almost every home and business.

A report is a collection of information, often summarized information, that’s
ready to be printed out. There are many occasions when printed output is nec-
essary; for example, presenting a membership list to the club secretary, or the
month’s sales figures to a committee, for instance.

Reports can include all or part of each record in the database, but they really
come into their own when used with queries. A report, just like a form, can be
based upon a query: the query sorts out the subset of data and the report pres-
ents it. A well-designed report is easy to read, contains no superfluous material
and provides a take-home message that is abundantly clear. A badly designed
one, of course, does none of the above, which is why good design is important.
Reports can also contain totals, subtotals and other values generated from the
data such as means, averages and percentages. Finally, reports can also be used
to ‘group’ information. For example, suppose you want to print out a member-
ship list from a club. You might want this grouped by region – all of the mem-
bers from Arlington, followed by all those from Burlington and so on. Of
course, you want the members’ names arranged alphabetically within each
group, you want a sub-total after each group showing the number of members
in that region and a grand total at the end. Fine, no problem; a report will do all
this for you.

A brief summary of the big four

An understanding of these four components underpins the flexibility of Access,
and in the next chapter we’ll look at each in more detail.

The remaining three tabs – Pages, Macros and Modules – we’ll leave, as we’ve
said, till Chapter 21 where we cover pages and Chapter 22 where macros and
modules are introduced. However, that coverage is brief because they aren’t
required in the early stages of learning about Access.

24

2 The Database wizard – or not

Component Function

Table Stores the data

Form Provides useful views of the data

Query Sorts out the pieces of data you want at any one time

Report Presents data for general consumption as printed output

Chapter 3

Tables – for storing your data

In Chapter 2, as a brief introduction to the four major components of Access –
Tables, Queries, Forms and Reports – we looked at a ready-made database
containing some data. In this and the subsequent three chapters we’ll cover
these four components (one per chapter) using the various wizards to construct
an example, with Chapter 7 as a brief refresher of the content covered thus far.

Tables are the most basic building blocks in a database; they are the containers
for the data. Tables underlie all the other components and all the functionality
that Access offers; the tables hold the data and the other three components
(forms, queries and reports) are tools for accessing, extracting and presenting
the data held in the containers.

There are two easy ways to create a table in Access 2003: one is to use the Table
wizard and the other to simply start typing in your data. Here we will use the
wizard because, as we’ve said, they are a very easy way of getting started.

Our example table will store a list of the members of a club and will, in fact, be
very similar to the table in the Addresses database that you’ve already seen.

Using the Table wizard

Close all the open windows within Access using their Close buttons and click
on File on the left of the menu bar and on New. The New File task pane opens
up offering five ways of creating a new database. We’ll take the first option,
‘Blank database...’, so click it and the File New Database dialog opens. The gray
panel at the top of the dialog reads ‘Save in:’ so navigate in the usual way to the
folder in which you want to store your sample databases and then look at the
bottom of the dialog, where Access is suggesting a file name. Type in something

25

memorable, reflecting the content of your database: my file is called Club. The
default file type is Microsoft Access Databases (*.mdb) which is perfect.

Click the Create button to proceed.

Building a table with the Table wizard

The database window opens, giving an overview of the contents of the data-
base: this view should already be reasonably familiar and will become more so
as your learn your way around Access.

26

3 Tables – for storing your data

In the Objects list, the Tables tab is selected. In the contents pane to the right is a
list of possible actions. We’ll try the middle option first: double click on ‘Create
table by using wizard’. This is the first page of the wizard.

Here you define the fields in your table. First look at the panel to the left with
option buttons labeled Business and Personal. Clicking on each reveals a list of
ready-made Sample Tables from which to choose. Highlighting one of these
Sample Tables shows a further list of the Sample Fields within the selected table.
We are aiming to build a table to store details of the members of a gardening club
(well, why not?) and theAddresses table from the Personal list seems suitable.

You aren’t obliged to use all the fields in the list. You choose the ones you want
with the selection buttons that lie between the sample fields list and the right
hand list labeled ‘Fields in my new table’. Highlight the AddressID field, for

27

3 Tables – for storing your data

instance, and click the top button. This transfers the selected field to your new
list.

Repeat this to build up a list of all the fields you want.

� Selection buttons like these occur in various dialogs. The arrowheads on the buttons indi-
cate the direction of transfer, letting you add or remove selections from the list you’re
compiling. The double arrowhead buttons add or remove the whole list.

I’ve chosen a mere nine fields – AddressID, FirstName, LastName,
Address, City, PostalCode, EmailAddress, HomePhone and
WorkPhone. I’m using the UK localized version of Access; yours may show
slightly different names here so just choose whichever seem appropriate.

28

3 Tables – for storing your data

�

� Addresses are typically split up into multiple fields, as in this case where three are used to
store the information instead of storing it in a single field. Benefits accrue when you need
to locate records because it will be easy to look for all those in Boston or those with 8 in the
postal code.

If you decide you want more than one field for the address, you can add the
Address field from the sample list more than once. It will be called Address1
the second time you add it, and so on.

You can edit a field name by highlighting an existing name in the ‘Fields in my
new table’ column, clicking the Rename Field... button, typing in the new name
and choosing OK.

� It’s good practice to choose names for your fields which reflect the content accurately. Lo-
calizing is also useful – ‘post code’ is fine in the UK whereas ‘postal code’ or ‘zip code’ is
probably better in the US.

Brevity is also often an advantage; for example, you might want to change the
long-winded EmailAddress to Email.

Now click the Next button.

29

3 Tables – for storing your data

�

�

Here you give the table a name; ClubMembers seems appropriate. This dialog
also introduces primary key fields. At this point, let the wizard do the work,
clicking the ‘Yes, set a primary key for me’ button.

� Primary keys are very important in a relational database; every table should have a pri-
mary key because they are the main way of ensuring the data entered into a table is cor-
rect and that all your future questions can be answered quickly and accurately. As to how
they achieve this impressive ideal – we’ll look at that in Chapter 15.

Click Next. The wizard wants to know your next move; unfortunately there’s
no option for ‘Just end the wizard because I haven’t decided what to do next’,
so click on the middle option ‘Enter data directly into the table’. This will enable
you to see the finished table. Click on Finish and you should see a table looking
like this:

� Incidentally, you’ll notice that the names of the fields that show up here are subtly differ-
ent from the names that you chose when you ran the wizard. For example, here you see a
field called Postal Code which has a space and yet you chose one called
PostalCodewithout a space. This is because fields can have not only a name, but also
a caption which is used as the label for the field. The wizard you have just used automati-
cally supplied a caption with a space in it. If it hadn’t, then the name of the field
PostalCode would appear. We talk about this in more detail in Chapter 8.

30

3 Tables – for storing your data

�

�

Close the wizard-created table by clicking the Close button. Back in the data-
base window you’ll see the new ClubMembers table in the list.

Tables can and should be different for different kinds of
data

All the data in a table should refer to objects (things) that are similar: a table
cataloging your Greek urn collection, for example, should contain Greek urn
information only. So, suppose that you collect both Greek urns and books and
you decide to catalog both collections in a database. If you try to store informa-
tion about urns and books in the same table it will be a mess. Why? Well, you
may want a field called ‘Publisher’ in the books table – Greek urns do not have
publishers. So, don’t build one table to store information about two kinds of
your possessions, use two tables – one for each type (or Class) of object.

Building a table by entering data

To illustrate the other quick method of building tables, let’s construct a table for
that mythical (or possibly mythological) Greek urn collection.

In the database window, double click the ‘Create table by entering data’ option.
A blank grid appears.

31

3 Tables – for storing your data

Each column has a heading, starting with Field1 and ending with Field10.
(More fields can be added if required.) The column headings you choose will,
when the table is finished, be the names of the fields that comprise the table.

The columns could contain information on when and where the urn was
bought, its style, color and type of decoration, its dimensions, its age and a field
for any additional notes. Add a name to the first column by double clicking in
the gray cell that currently says Field1. This designation will be highlighted
and you can type in your own entry. Do this for a few fields and then enter
some data in the white cells below.

� You can, in fact, type in the data and add the headings later, but this might lead to confu-
sion if, without headings to guide you, height data was entered accidentally into the col-
umn for width data and vice versa. Suddenly your tall elegant urns are all short and
squat which will earn you a poor reputation...

If you need to delete a column, click with the right mouse button in the title cell
and choose Delete Column. (You don’t need to delete any spare fields you
don’t use because only the columns that contain data will be saved as part of the
table definition).

To add further columns, right click in the same way to highlight the column to
the right of the position for the new column and select Insert Column. (If you add
a column after you’ve renamed the first column, the new one appears as
Field1.)

When you click the Close button on your new table, Access will ask if you want
to save changes so answer Yes and type in a name. Access reports that no pri-
mary key field has been chosen for the table so click the Yes button to let Access
add a suitable field.

32

3 Tables – for storing your data

�

This is how the Datasheet view of the Urns table should look with a few more
records added. The first field, labeled ID, is the one Access added to act as the
primary key field.

Adding records

When you start typing data into a table, a pencil icon appears in the gray square
to the far left of the row. This indicates that the record has been altered but not
yet saved, or ‘posted’, in database terminology. Moving down to the next row
automatically posts an entry, as does clicking on the pencil icon.

What do we mean by ‘posting’ the entry? Well, when you use a word processor
to create a letter, you save the letter at intervals as you work, or you set the word
processor to do it for you, or you live dangerously and only save the finished
letter. Access sometimes works in the same way. For example, when you create
and edit a form, it exists only in the memory of the machine until you actively
save that form. If the machine crashes, the form will be lost. The same is true for
reports and queries and even when you are creating a table. However, once a
table has been created and you start entering data, Access treats the data in a ta-
ble very differently. Every record that you create and/or edit is treated as a valu-
able entity. As soon as you move to another record, the one upon which you
have been working is saved to disk. The good news is that the data in your data-
base is much more likely to survive if your machine has a problem. The bad
news is that you cannot undo multiple edits to multiple records. Some undo
ability is allowed via the interface, and the general rules are as follows:

• If you are adding a new record, or editing an existing one and you haven’t
moved off that record, you can move the cursor along that record and alter or
add to each field. You can also click the Undo button to undo changes.

33

3 Tables – for storing your data

• Once you’ve posted the record, you still have a small window of opportunity
within which to undo the changes by going to the Edit menu and clicking Undo.
When not available to you, the option is grayed out and reads ‘Can’t Undo’.

But that’s it. You can, of course, locate any record and edit it manually to re-
move changes made earlier, but you can’t do it using the Undo method. Al-
though these general rules apply most of the time, in certain Access
applications you may not be able to undo any changes.

So the bottom line is to be careful out there when you’re dealing with important
data. It is well worth playing around with a table of test data to get a feel for
what you can and can’t do before working with real data.

Field names

If you skipped Chapter 1, we strongly recommend that, at this point, you read
the section called ‘What’s in a name?’ The advice given there can safely be ig-
nored for this first table but is worth following for real databases that you build
in the future.

Records and fields revisited

A record comprises all the data you collect for one person, urn or whatever. In
the address book example, everything entered in the database about Person X
comprises their record – which is a single row in the table.

Records are made up of fields and the fields reflect the individual pieces of in-
formation being collected. The address table has fields for first name, last name,
phone number and so on – each field is a column in the table.

34

3 Tables – for storing your data

� As we have said, the terms ‘row’ and ‘record’ are often used more or less interchangeably,
as are ‘field’ and ‘column’. If you want some guidance, as a general rule, if I was talking
about the table structure itself, I would tend to talk about rows and columns (‘This table
has five columns and 20 rows.’) If I was talking about the data I would tend to use field
and record (‘The LastName field in John’s record contains the value “Parker”.’) But
this is not a hard and fast rule – only a pedant would differentiate too forcefully.

If you’ve worked through the chapter thus far you should have a database
like the one in the file called chap3.mdb. The screen shot above shows the
ClubMembers table from the Club database just as described above. The only
difference is that we have added some data.

35

3 Tables – for storing your data

�

Chapter 4

Queries – finding data

Why you need to use queries

Creating and maintaining databases is fun (or at least I find it so) but ultimately
we don’t do all this work for the fun of it, we do it because sometime, some-
where, we are going to want to get data back out of the database. Typically we
use queries to do this for us.

What is a query?

Queries can be simple: ‘How many contacts do I have in Fontana or Frankfurt?’,
for instance, or more complex: ‘Do I know anyone with a birthday in May who
drives a Dodge Viper and lives in Oregon?’ Given a business application, even
more complex queries can be imagined: ‘What are last year’s sales figures,
month by month, for each sales representative working in Europe but ignoring
sales of the new product SuperClean?’

Queries can be saved for future use. You can build queries for questions that are
asked regularly about the data. For example, you could construct a query which
lists the current membership of a club or another which works out the turnover
for the current month. When a need arises for up-to-date information, simply
run the saved query and it will produce the current answer.

The answer to a query appears in a table or, more specifically, in an answer ta-
ble. This has the look and feel of a table, but it does not, in fact, have any lasting
existence and you won’t find it listed in the Tables tab of the current database
window. An answer table is a ‘virtual’ table; as soon as you close the query, the
answer table ceases to exist. In case this sounds like a problem, it isn’t. Typically
you don’t want an answer table to be permanent (and if you ever do, as ex-
plained later, Access provides an easy way for you to achieve this) and the de-
fault therefore is for transitory answer tables.

36

Using the Query wizard

The query wizard provides a great way to learn about queries, so we’ll start
with that.

Building a query

Load the Club database (chap4start.mdb) from the AccSamp folder: this is
the same database as the one constructed by the end of Chapter 3 except that it
has data in it. In the database window, click on the Queries tab. There are two
options for creating queries: choose the wizard method with a double click.
(You can see a greater selection of query wizards by clicking the New button
from the database window menu. If you elect to do it this way, choose the Sim-
ple Query Wizard for now).

Here you select the table and fields to use in the query using essentially the
same methods as in the Table wizard. Select the ClubMembers table from the
pop down list of Tables/Queries (unless it’s already selected) and then inspect
the list of Available Fields below.

For this example I’ll include, say, theFirstName,LastName andCity fields.

Now click the Next button, give your query a name (I’ve used People) and
click Finish to accept the default ‘Open the query to view information’.

37

4 Queries – finding data

� As a general rule it is worth picking memorable and informative names for the objects
that you create in Access. I realize that ‘People’ doesn’t follow this rule but the query is so
simple that a choosing a meaningful name represents something of a challenge!

Here’s the result of your query. The title bar reads People: Select Query. Your
query has ‘selected’ a set of records corresponding to the responses you gave
the wizard. In this case, the set selected comprises data from three of the fields
and all of the records in the table.

This wizard, like its name suggests, builds only simple queries. You can choose
a subset of fields but you cannot specify a subset of records. This is a limitation
because the majority of questions asked of a database demand a subset of both
fields and records: the names of my contacts based in London and Long Beach,
the prices of the silk shirts or all the addresses from the July invoices.

The other query building wizards – ‘Crosstab’, ‘Find Duplicates’ and ‘Find Un-
matched’ – all tend to be relatively specialized. In practice, the easiest way to
create a simple query that subsets both the records and fields is to use the Query
Design tool. However, the good news, as I implied in Chapter 2, the query de-
sign tool is so easy to use that I rarely use the query wizards. With that in mind
we’ll move on rapidly.

38

4 Queries – finding data

�

The Query Design tool

With the Query Design tool you can build anything from the simplest to all but
the most complex queries.

Creating a simple query

Close the People answer table and back in the database window, double click
‘Create query in Design view’.

This pops up the Show Table dialog with a window behind it. The active dialog
has three tabs: our query will be based on the ClubMembers table again so
from the Tables tab, double click it. A representation of the chosen table now
appears in the background window.

That’s all we need but if you look in the Queries tab, you’ll see your People
query. (If you are now beginning to wonder whether this means that you can perform
the recursive-sounding process of basing queries on other queries, you’re right. We have
a look at that in Chapter 9). And if you look in the Both tab – well, you guess.

39

4 Queries – finding data

Your actions so far have determined the table upon which the query is to be
built and placed it in the Query Design window. When you click Close in the
Show Table dialog, you see this:

(If a Query Properties sheet is also visible, it’s worth closing it for the moment to
keep things simple.)

There are two main elements to the Query Design window:

The top section is the Table/Query pane and shows the table or query on which
the new query is based.

Beneath that is the Query Design pane, a grid where you define the query. Each
column of the grid can contain one field and information which narrows the
search for data within that field.

Finding the right fields

The first step in building any query is to select fields to appear in the query
answer.

In the table in the upper pane, the top row contains just an asterisk (*); this is
formally known as the ‘all fields reference tag’. This is Access-speak for ‘include
all fields in the query’. Double click on it and the field name ClubMembers.*
appears in the Field row of the grid.

� To identify a field unequivocally in Access, it’s written as TableName.FieldName.
The entry in the field row of the query grid is ClubMembers.*, meaning all fields in
the ClubMembers table.

40

Queries – finding data

�

The table name in shown the Table row and the check box in the Show row is
checked.

If this check box is checked, the field will be visible in the completed query.

� The last statement may sound odd and could reasonably provoke the question ‘Why
would I ever select a field that I don’t want to see in the answer?’ Well, for example, sup-
pose you want to find every member in Seattle. You will need the City field to be in-
cluded in the query in order to select those members. But it is pointless to make the City
field visible in the answer table because every record will contain the same value – Seat-
tle. ‘Ah, but’, you argue ‘I want it to be visible in order to check that my query is working
properly.’ OK, that’s fine, the choice is yours and I often do the same, particularly when I
first create a query. But once you are happy that the query is working properly, you may
well find it useful, particularly when working with big sets of data, to have the option of
removing the field.

The query looks like an exercise in minimalism but run it anyway by either
clicking on the Run button:

or on the View button

which flips you between the Design view (where you define the query) and the
Datasheet view (where you can see the results).

41

4 Queries – finding data

�

� For now these two buttons appear to do exactly the same job i.e. let you see the answer
table. They do have subtly different functions and all will be revealed in Chapter 9.

Despite the minimalist query, all the fields in the table have been selected and
the data from each is displayed.

Making use of an asterisk in a query is a very quick way of building a query that
shows all of the fields in the table. Using the Query Design tool you could get
the same result by picking each field manually but the asterisk method brings
other advantages apart from speed. If you save such a query, the results will al-
ways include all fields, even if you’ve deleted fields from the table or added
new ones since you last ran the query.

Close the answer table by clicking the Close button. Access asks if you want to
save the new query (provisionally entitled Query1). We might as well save it as
the informatively named AllInfo.

Now let’s create a query from a limited set of fields.

Start as before, selecting the ClubMembers table for use in the query grid.

42

4 Queries – finding data

�

To include a subset of fields in a query, add them one at a time. Double click on
the FirstName field from the ClubMembers table in the upper pane. This
puts the field name into the Field row of the grid, the table name into Table row,
and a check into the Show row.

Repeat to select all required fields: as well as FirstName I’m using LastName
and City.

Run the query.

Now a subset of fields is displayed for all records.

Incidentally, I’d love to tell you that I was good enough to always build exactly
the query I want first time, but it isn’t true for me and I suspect it isn’t for most

43

4 Queries – finding data

database designers. Designing a query is often an iterative process. You do some
of the design work, run the query and see what you get, alter the design a bit,
run it again and so on until it is perfect. So, for example, in this case, perhaps
you want to see phone numbers as well. To swop back into the Design view,
click the View button, which now looks like this:

Back in design mode, you can modify the query by adding or removing further
fields.

Now you can create queries using all fields or just some of them, what about
controlling which of the records will appear in the answer table?

Finding the right records

We’ll continue to work with the current query so return to the Design view. A
glance at the Query Design grid shows that there is a row labeled Criteria (and
one labeled, mysteriously, ‘or’) and this is where you determine the records to
be displayed.

The entry you make in the Criteria row is the information that Access will try to
find in that field, so on the Criteria row in the City column, type:

seattle

44

4 Queries – finding data

This says, in English, ‘select the record only if the entry in the city field says
Seattle’.

� When you type ‘seattle’ as a criterion and then move the cursor (say by pressing the tab
key), Access automatically wraps the word in quotes so you don’t have to bother – an-
other time-saving device brought to you by the creators of Access. The match also hap-
pens to be case-insensitive so it will find ‘seattle’, ‘Seattle’, ‘seAttlE’ etc.

Run the query and see if your result looks like this:

There should be two people living in Seattle, Ferdinand Gratz and Dan
Whipple, and that’s your first answer comprising a subset of records.

45

4 Queries – finding data

�

Return to the Design view. On the ‘or’ row in the City column, type:

london

Run the query; you should see this:

46

4 Queries – finding data

It shouldn’t be a surprise that the Seattle residents’ records have been joined by
those of the Londoners. The English rendition of the criteria is now ‘select the
record if the entry in the city field says either Seattle or London’. Further criteria
can be added in subsequent rows.

You’re not limited to setting criteria for a single field, however. If you want the
records for anyone living in London whose name is Laura, the criteria in the
City column would read ‘london’ and in the FirstName column, ‘laura’. Cri-
teria in different columns are taken to be joined with an ‘and’: in English the
query says ‘show me the records where the city field contains ‘london’ and
where the first name field contains ‘laura’.

47

4 Queries – finding data

� The results of expressions containing ‘and’ and ‘or’ can sometimes cause confusion. If
you use ‘or’ you will, as a general rule, get a larger answer set than if you use ‘and’. At
first glance, this may seem odd. What the ‘or’ is saying is “Accept a record for display in
the answer table if it contain either x or y”, so you get all the records which contain x and
all those that contain y. ‘and’ says “Accept only those records that contain both x and y”
so you only get the records that meet both criteria.

Operators

‘and’ and ‘or’ are both operators. These are used in queries and also in other
parts of Access. Now seems like a good time to cover them and while we are at it
we’ll look at wildcards.

Operators are used to modify the way in which (in this case) the criteria work.
So far we have come across two operators – ‘and’ and ‘or’. However, there are
others that you can use. Remember when you typed in the word ‘seattle’ as a
criterion, it worked fine because the City field contains text information and
we wanted an exact match to the word. Suppose that you were using the Urns
table and wanted to find all of the urns shorter than 20 units tall. This informa-
tion is in a numeric field so you are clearly going to use ‘20’ as the criterion.
However, if you simply use ‘20’, the answer table will simply list those urns that
are exactly 20 units high. Using ‘<20’ will do the job perfectly because ‘<’ is an
operator that means ‘Less than’. The table below lists the common operators.

48

4 Queries – finding data

�

Commonly used operators

Symbol Meaning

* Multiply

+ Add

- Subtract

/ Divide

= Equal

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to

<> Not equal to

Is null Doesn’t contain data

Is not null Does contain data

Like Similar to

� Null values are discussed in Chapter 8 but in essence a field that doesn’t contain any data
is said to be null, or to contain a null value.

As a general rule the ‘=’ symbol is assumed if you don’t supply one; hence
when you typed ‘seattle’, this was taken to mean ‘=seattle’.

Wildcards

So far, so good. But suppose that you want to find customers in Seattle but you
can’t remember how to spell the name of that city. Access will allow you to use
what the computing world calls wildcards – ‘*’and ‘?’.

‘*’ means substitute any number of characters here. So, assuming that you
know that Seattle starts with an ‘S’, you could type in ‘S*’. Access will turn this
into ‘Like “s*”’

When the query runs, you find the correct records, you discover how Seattle is
spelt and, as an added bonus, you also find the records for San Francisco.

49

4 Queries – finding data

�

The ‘?’ wildcard is much more specific (and therefore used less frequently) and
substitutes for a single character. Thus ‘car???’ will find Carmel but not Cardiff
(both of which exist as cities in the ClubMembers table) because Cardiff has
seven letters, not six.

Access will again add inverted commas to turn the criterion you type as car???
into:

Like “car???”

This simply means ‘Find the records which are like this’. Of course, you can
type the expression in full, but why not let Access do the hard work?

We’ve been experimenting with this query so once you’ve finished exploring
the delights of wildcards and such, there’s no need to save it though you can do
so if you wish.

Finding both fields and records

The foregoing methods can be used to produce an answer which is both a sub-
set of fields and a subset of records. This, in fact, is what most queries are and it’s
also what gives queries their flexibility.

50

4 Queries – finding data

To illustrate this, we’ll build a query which looks for all residents of Tacoma and
shows their names and phone numbers.

Start with a new query constructed from the Design view and based on the
ClubMembers table. Add four fields: first and last name, city and home phone
number. Type the criterion:

tacoma

into the City column and run the query. This is the answer:

Do you really need to see Tacoma listed three times in the answer? You already
know you’re looking for Tacoma residents; you might even have named the
query Tacoma. Flip to the Design view. Click in the Show box in the City col-
umn to remove the check and run the query again.

This is a good example of why it’s useful to be able to include a field in a query
without displaying its contents as part of the answer table.

Multiple queries per table

A query can be saved for future use and many different queries can be associ-
ated with a single table. This brings efficiency gains and saves time; particularly
useful queries and ones which are likely to be run often (monthly sales, for in-
stance) can be used time and time again.

51

4 Queries – finding data

Saving queries

When a query is working correctly and you are likely to use it again, save it.

With your query on the screen (either in Design or View mode), click File, Save
from the menu, or the Save button, or press Ctrl+S on the keyboard. In the re-
sulting Save As dialog, enter a name for your query (mine is Tacoma)

and click OK. Return to the database window and the new query should be
listed under the Queries tab.

When you want to run the new query, activate the Query tab of the database
window and double click on the query. It will run and generate an up-to-date
answer from the data in your database.

52

4 Queries – finding data

Saving data with a make-table query

Not only can you save the query, you can save the result it generates too.
Mostly it’s enough to save a query for future use so that you generate an
up-to-date answer each time you run it. Occasionally, however, it is useful to
have a snapshot of the answer returned at a particular time.

To turn the answer table produced by a query into a new table in the database,
you use a Make-table query.

With theTacoma query open in Design view, look at the title bar which says Ta-
coma: Select Query. ‘Select’ simply describes the action of the query: it selects
the records as per your query definition.

� Queries have a terminology all of their own and much of it comes from a language specifi-
cally designed for building complex queries. The language is SQL, Structured Query
Language, and ‘select’ is one of its commands. You’re unlikely to need to know anything
more about SQL as Access’ querying is sufficiently powerful to make it unnecessary ex-
cept for highly specialized querying.

SQL, by the way, is pronounced variously as ‘Ess-que-ell’ and ‘Sequel’; the former pre-
dominates in Britain and the latter in the US.

For the current task we need a different type of query. Still in the Design view,
find the Query Type icon in the top menu

and click on the arrowhead in the bar to its right. Click on Make-Table Query...
from the pop down list. (If this option isn’t listed, click or just hover over the
double arrowhead button to extend the list). In the Make Table dialog box, type
a name for the new table such as TacomaResidents and ensure the Current
Database option button is selected.

53

4 Queries – finding data

�

Click OK. As can be seen from the title bar, the Tacoma query is now a
Make-Table query and it will generate a table called TacomaResidents. When
you close it, Access asks if you want to save it in its new guise. Answer Yes and
in the database window, its icon changes to reflect its new type.

Now try running it. Access will check two things with you: firstly, that you’re
aware of the query’s type: click Yes to continue. Secondly, Access asks if it’s OK
to proceed with pasting data into a new table.

� Access is ensuring that you remember that each time a Make-Table query is run, the data
in the table will be over-written with the most recent results from the query.

Answer Yes again. Look in the Tables tab of the database window and there’s
the new table which you can open and inspect just like any other table.

� A table created with the Make-Table query does not inherit the primary key nor all of the
field properties from the original table. There’s more on both these topics in Chapter 8.

If you run the query a second time, Access will check three things. Firstly, as
before, that you know it’s a Make Table query, secondly, that the existing
TacomaResidents table will be deleted, and thirdly that data will be pasted
into a new table. One more point seems worth making here. As described above,
Access overwrites the TacomaResidents table each time. If you want to
preserve any particular copy of the table, simply rename it. You can do this by
right clicking on the name of the table, selecting Rename and adding, say, a 1.

54

4 Queries – finding data

�

�

When you rerun the query it will generate a new table with the name
TacomaResidents leaving TacomaResidents1 intact.

Summary

With queries you can pull selected information out of a database and in this
chapter we’ve introduced that most straightforward and most useful type of
query, the Select query that allows you to select exactly the information you re-
quire. Make-Table queries are rather less commonly used but can be very useful
on occasions.

The database constructed so far is contained in the file chap4end.mdb.

55

4 Queries – finding data

Chapter 5

Forms – viewing and entering
data

You are well aware that you can see data in tables so you may be wondering
why forms are needed at all because they show data too. What, then, is the
difference?

A table is a table is a table. It stores data and that’s its primary function. Forms
can be thought of as gateways into the table: you can enter data into a table via a
form, use a form to view data, edit it and manipulate it. True, you can do all
these things by interacting directly with the table but there is no easy way of
modifying what a user sees of a table: it’s all or nothing. With a form, you can re-
strict the visible fields so that the form acts like a filter on the data in the table. In
addition, a whole range of different forms can be associated with one table. As
we said in Chapter 2, Access allows you to restrict who can use which form (and
stop people getting to the underlying table) so that nobody has to wade
through irrelevant data and no-one can get to information that they shouldn’t
see.

Forms are also generally more helpful to the user than tables. You can label
fields with terms that mean something to the user of the form, rather than hop-
ing they’ll understand the terminology chosen by the designer of the table. You
can also put messages to the user on the screen and provide ways of making
data entry less tedious and hence less likely to contain errors.

So tables are the core of a database and hold the data, but users of the database
will typically interact with that data via one or more forms.

56

Really rapid form creation

Access has a one-click mechanism for creating forms: this speed freak is the
AutoForm and we’ll use it to create a form for entering new addresses into the
Club database.

If you’re following the examples, start with the database in chap5start.mdb.
In the Tables tab of the database window, ensure that the ClubMembers table
is highlighted. Click Insert on the main menu and choose AutoForm – and
there’s a whole new form that includes all fields.

You can also create an AutoForm by highlighting the table upon which you
wish it based and clicking the down arrow alongside the New Object button

and selecting AutoForm. If hover help says New Object: AutoForm as your
mouse hovers over the button, you can just click the button itself. Hover help
shows the last use that was made of the New Object button, which is what it
will do when clicked.

57

5 Forms – viewing and entering data

You can save an AutoForm in the usual way: I’ve called it AllFields. To add a
new record using the new form, click on the New Record button on the toolbar
or on the form and you’re ready to enter new data.

As discussed, this form contains all of the fields in the table; such forms are of-
ten used for data entry when a complete record is required. But suppose that
you want to create a more specialized form which shows only some of the
fields? For this you can use the Form wizard.

58

5 Forms – viewing and entering data

Using the Form wizard

In the database window, click the Forms tab and double click ‘Create form by
using wizard’. In the first step of the Form wizard, select the table with which to
work: we’ll stick with ClubMembers and build a form to view names and
postal addresses.

Move the appropriate fields from the Available Fields panel to the Selected
Fields panel with the arrow keys

and click Next. Four layout types are offered for your form; a sample is dis-
played as you click on each of the four options. I’ve chosen the Justified layout
and, in the next page, the style called Stone.

59

5 Forms – viewing and entering data

Click Next. Give the form a title (I’ve used PostalAddresses) and check that
the option button for ‘Open the form to view or enter information’ is selected.
Click Finish and you have a form for viewing name and address information
from the club membership database.

Creating different types of form

The Form wizard can be used to produce a good usable form and Access allows
you to customize this form in an almost infinite series of ways. This is done with
the form designer, a tool that we examine in detail in Chapters 10 and 11. That’s
where we show you how to do all the fun things like inserting pictures, chang-
ing colors and so on. With great restraint we have resisted the temptation to go
straight to the colorful bit and in this chapter we have concentrated on intro-
ducing the less visually stimulating but potentially more useful topic of calcu-
lated values.

Calculated values

Suppose that you want to store information about people. If that information
includes, say, pension information, you will need to know how old each person
is. So should you store their age in the table? The obvious (and correct) answer
is ‘no’ because that information would have to be updated every time each per-
son had a birthday. However, suppose that you store each person’s date of
birth in the table and use a form to look at the data. As each record is displayed
in the form, the current age of the person can be calculated by Access and
displayed.

� We won’t actually demonstrate how to create this one because, despite being a great ex-
ample to which most people can relate, it happens to be rather tortuous to do in practice.
This has nothing to do with Access and everything to do with the tortuously complex

60

5 Forms – viewing and entering data

calendar system that we use. However, we also understand that using it as an example
and not providing a solution is likely to be frustrating if an age calculation just happens
to be exactly what you need for your database. So we have included an example, solved
using the Access programming language, in the file called Chap5ages.mdb. Feel free
to look at it if the subject interests you.

We’ll demonstrate calculated values with another example, where we can con-
centrate on the method rather than the intricacies of date manipulation. Sup-
pose you store information about urns. Amongst the information stored in the
database is the height and the width of each urn. Suppose also that you fre-
quently move the urns around and so you need to know the smallest packing
case that will accommodate each urn. Your carrier isn’t interested in the shape,
just the external volume of each case, in order to calculate the shipping charges.
Should you also store that information in the table of information about urns?
The answer is again ‘no’ because that information is already inherently stored
in the table. To calculate the external volume of the case required (assuming
that the case walls and packaging are 1.5 units thick on each side) all you have
to do is to multiply (height + 3) * (width + 3) * (width + 3).

We call data that is inherent in other data ‘derivable’ or ‘redundant’ data for the
simple reason that it can be derived from the existing data and therefore storing
it is redundant. As a pretty hard and fast rule, you shouldn’t store derivable
data in a table. Instead you get the computer to calculate it for you whenever
you need it. This can be done using a form (as we’ll demonstrate here) or using
a query (as demonstrated later in Chapter 9). Since the users of your database
will only view the data using a form, as far as they are concerned, the age of the
person or the shipping volume of the urn is always visible. Indeed, they may
believe that the information is stored in the database – that’s fine; as long as the
database is useful to them, it doesn’t matter how the information is stored.

61

5 Forms – viewing and entering data

�

Forms performing calculations

Putting a calculation on a form means using the Design view but we’ll start by
building a simple form with the Form wizard. Based on the Urns table, the
form uses the fields ID, Height, MaxWidth and DesignType. I’ve called it
TestCalc and the finished form looks like this:

Flip into Design view by pressing the design button:

The form now looks like this:

Design view gives you the tools you need for controlling how a form looks and
behaves. You can move the fields around, remove them and add different ones,
change the sizes, colors, fonts, patterns, borders, add messages to the user and
all sorts of other stuff that’s covered in detail in Chapters 10 and 11. You can
also, of course, add calculations, and we’ll do that now.

We’ll add a calculated field to this form that will add the value 3 to each dimen-
sion and then multiply the figures together to calculate the shipping volume.

62

5 Forms – viewing and entering data

First, give yourself some more room on the form by placing the cursor on the
bottom right corner of the gridded area, called the Detail section, which
denotes the shape of the finished form. When the cursor shows as a
four-headed arrow, drag the area out a bit.

Calculations are almost always placed in text boxes on a form; check out the
Toolbox.

� (If you can’t find the toolbox, select View, Toolbox from the main menu.)

Within the Toolbox locate the Text Box tool.

63

5 Forms – viewing and entering data

�

Click it and move the cursor onto the form. Click and drag to outline a text box:
make your first click some way in from the left hand edge of the form so there’s
room for both the text box and for the accompanying label that’s placed to its
left. Play with the various handles to move it around and resize it: to move the
label (which will say ‘Text8:’ or some such number) or the text box independ-
ently, put the cursor on the top left corner whereupon it changes into a
hand-with-pointing-finger. (A cursor showing a spread hand moves the two
together).

Objects and properties

Everything on a form is an object and every object has a set of properties. (In
this case we are using the term ‘object’ in a slightly more formal sense than in
Chapter 2). Objects are things like fields, labels, the detail, header and footer
sections and the form itself. Properties are things like the size, color, font,
caption and so on. Different objects have different selections of properties, just
like objects in real life. For instance, a notebook would have a ‘number of pages’
property which has no meaning for, say, a fish.

64

5 Forms – viewing and entering data

To see the properties of any object, place the cursor on it, click the right mouse
button and select Properties, last on the list. A window like this will pop out,
showing the object’s property sheet.

You can also see an object’s property sheet by selecting it and clicking the Prop-
erties button,

or you can double click on the object itself, or you can select an object and press
F4 on your keyboard. Once a property sheet is displayed, you can click on other
objects and the sheet will change to show the properties of the selected object.
You must actively choose to close the property sheet using its Close button or
the Properties button in the top menu.

To see the properties of the form, rather than those of the individual objects that
make up the form, click on the Form Selector. This is the gray square in the top
left hand corner of the form in Design view.

When you click it, a small black square appears inside the gray square and the
properties for the whole form are now listed. Clicking on any other object

65

5 Forms – viewing and entering data

returns the form selector to plain gray and changes the property sheet to show
the properties of the object you have now selected.

For any given object there is a number of tabs in the Properties dialog – typically
five: Format, Data, Event, Other and All (which combines information from the
previous four).

Inspect the Data properties of the new text box. The first property on the Data
tab is Control Source: this tells the text box where to get the information to
display on the form. Put the cursor in the Control Source cell and two buttons
appear to the right. The left one pops down a list of the fields in the table that
underlies the form. We don’t want data from a single field but the data from
two (Height and MaxWidth) manipulated such that we add three to each to
allow for the packaging. We then want to multiply the height by the width, and
then by the width again to calculate the volume.

In pseudo English the equation would read something like:

(height + 3) * (width + 3) * (width + 3).

In practice, we need to use the names of the fields that hold the data so the
equation reads as:

([Height]+3)*([MaxWidth]+3)*([MaxWidth]+3)

All we have to do is to add an equals sign to the front and we get:

=([Height]+3)*([MaxWidth]+3)*([MaxWidth]+3)

which is what you need to type in as the control source:

66

5 Forms – viewing and entering data

While we are here in Design mode, you could also change the Caption of the
new label to something more sensible. You could also decide to hide the height
and width fields so just the volume is shown on the form: in the Format proper-
ties of the Height text box, change the Visible property from Yes to No (click
the arrow and choose).

Do the same for MaxWidth and inspect the form again.

A quick check of the arithmetic tells you it’s working properly.

67

5 Forms – viewing and entering data

Querying from a form

We’ve shown you how to use queries to find specific records. However, if your
query requirements are very simple, it’s also possible to do it from a form.

Open theAllFields form and, if you want to see just the records for people in
London, find a record with London in the City field, place the cursor in that
field and click the Filter By Selection button in the menu bar:

At the bottom of the form you’ll see that you now have a smaller set of records,
filtered out from the full set if the City field contains London. To return to the
full set of records, click the Remove Filter button:

You can only filter on a single field at a time but it’s a handy shortcut for
reducing the number of records you see.

Multiple forms per table

As mentioned briefly above, many forms can be associated with one table.
Creating a range of forms could simplify the performance of various tasks,
making data entry more enjoyable, maintenance of existing data less confusing
and so on. It also lets you give users exactly the tool they need for a particular job.

Summary

Building forms is quick and easy using the Form wizard and AutoForm while
for more adventurous forms, the Form Design tool provides the needful. As
we’ve said, there’ll be a lot more about the Form Design tool in Chapters 10 and
11 as this chapter contains only a brief introduction. Using the wizard and the
Design view in conjunction speeds up development time as you can start with a
wizard-generated form that’s almost perfect and then fine tune it with the tools
in the Design view.

68

5 Forms – viewing and entering data

Chapter 6

Reports – printing your data

Demands for data in printed form are still much in evidence. “Can you just run
me off a copy of the latest stock levels/employee details/baseball scores?”So
much for the paperless office.

Reports are Access’s way of preparing data for printing, with headings, page
numbers and the information arranged in helpful groups. Looking at the Re-
port wizard will provide a good overview.

Creating a report using the Report wizard

Start with the chap6start.mdb file. Under the Reports tab in the Club data-
base window, double click on ‘Create report by using wizard’. The goal in this
example is to print out a list of each member’s contact details including phone
numbers.

In the first screen, select the table on which to base the report (good old
ClubMembers) and then choose the fields you want in the report. I’ve chosen
all fields except the ID field.

Click the Next button. The wizard asks if you want any ‘grouping levels’: we’ll
ignore this for now (but we’ll do it in Chapter 12) so click the Next button.

69

Here you can specify the sort order for the records. Mostly we find a person’s
phone number by looking up the last name, so select LastName from the pop
down list in the top sort slot. Either stick with the default A–Z order or swop to
Z–A order if you’re feeling perverse (or perpetually hard-done-by as you
would be if your last name was Whitehorn...).

Click Next. In this dialog, the wizard offers six layouts for the report (a sample is
shown when you make a selection), two paper orientations and a very handy
check box for juggling things so that all the chosen fields fit on one page. My
settings are Tabular layout and Landscape orientation.

70

6 Reports – printing your data

� The ‘Adjust the field width so all fields fit on a page’ check box could also be referred to as
a ‘print to fit’ check box – it prints the output so it fits onto the page neatly.

This option is certainly useful but it doesn’t possess supernatural powers. If you have
lots of fields in your portrait-orientated report all packed with long text entries, it can’t
possibly fit it onto a single page. Access will do its best but field names and contents are
likely to appear truncated when you print out the report.

Choose a layout and orientation and click Next, then choose a style and click
Next. Name the report (mine is PhoneList) and click Finish with the ‘Preview
the report’ option selected (the default).

This is part of the resulting report.

Creating other wizard-generated reports

Having already met AutoForms in Chapter 5, you might have noticed
AutoReport listed under the New Object button or the Insert menu option. This
will let you generate reports even more rapidly than by using the Report wiz-
ard. You have little control over what’s produced and sometimes the results are
less than optimal but for all the time it takes to try, it’s often worth generating
one to see if it will do the job.

71

6 Reports – printing your data

�

Highlight the ClubMembers table in the Tables tab, click the arrow alongside
the New Object button, select AutoReport and that’s it.

Hmm, not so great, this one. It’s simply a list of entries in which it would be
hard to locate a specific phone number or even person as the records are listed
in the order they were entered. Close the report and don’t bother to save it.
Some you win, some you lose.

72

6 Reports – printing your data

Other types of AutoReport are available from the New button in the database
window. With the Reports tab selected, click this button:

and you’re offered AutoReport: Columnar and AutoReport: Tabular. Choose
the former and then pick the ClubMembers table from the pop down list
below.

Click OK and the new report is displayed as shown below.

73

6 Reports – printing your data

This columnar report has the same problems as the first AutoReport we gener-
ated. Throw it away and try the AutoReport: Tabular option which is some-
times more satisfactory, as it is here,

but I still won’t save it as once more the records are in entry order rather than al-
phabetical by surname: the PhoneList report does a much better job.

Printing a report

OK, you’ve created a report, now let’s get it committed to paper. We’re presum-
ing you have a printer set up from Windows and ready to go.

� Troubleshooting printer problems is outside the remit of this book but if you experience
difficulties, start by checking your printer setup under Windows.

First let’s have a sneak preview of what we hope will roll out of the printer. In
the Reports tab, highlight the PhoneList report and click either the Preview
button in the database window or the Print Preview button on the toolbar.

74

6 Reports – printing your data

�

Your report is displayed just as it will look on paper. (Click the One Page button
to see the whole page).

It looks promising so click the Print button on the toolbar. Your report should
print out looking just like the preview with a title at the top and the data ar-
ranged under field headings, with today’s date and a page number at the
bottom.

Summary

You can now print out reports from your database – membership lists, monthly
sales reports and personal phone directories are just a few clicks away.

75

6 Reports – printing your data

Chapter 7

The story so far

You can create and manage a simple database

With the tools and techniques covered in the preceding chapters you can create
and manage a simple database for such applications as club membership, in-
ventories and address/contact lists. You can do everything from building the
database to the point when you can present neat printed reports of the infor-
mation collected.

You’ve met the four important building blocks

Tables – for storing data
Queries – for locating specific information
Forms – for interacting with the data (viewing, adding or editing records)
Reports – for presenting printed information

These four will appear again as we continue our progress through Access and
each time they surface you’ll learn a little more about them. While it’s true that
things get more complex from here on in, Access’ famed ease of use rarely
falters.

Keep your work safe by backing up

Backing up is all about keeping your work safe whether you’re working
through the examples in order to learn about Access or whether you’re devel-
oping your own database. It’s quick and easy to do and can save an awful lot of
grief should anything go wrong.

A backup is simply a copy of your work to date. Whenever you build an Access
database, a file is created with the extension .MDB in which all your tables,
queries, forms and reports are held. This means there is just one file to back up,
which makes life easier.

76

Access has made life even easier by providing a backup facility. With the data-
base window open but with all tables, queries, forms and reports closed, click
Tools in the main menu and select Database Utilities and then Back up Data-
base.... A window opens so that you can specify where to place the backup file.
The backup file name will have the date in YYYY-MM-DD format appended so
it’s easy to see when it was made.

If you make more than one backup on a particular date, a number will also be
appended. The name of the second backup will look something like this:
MyDatabase_2004-04-16_(1).mdb. (Another unhelpful instance of
counting from zero – it just goes to show that while computers may know about
digits, they certainly don’t count on their fingers.)

The backing up process will close the database and then re-open it, and you’re
ready to continue.

Keeping a safe copy on your computer is an excellent plan, but ideally, you
should also keep backup copies on a CD-ROM or floppy disk, tucked away
somewhere safe.

Backups can also be made manually by copying and pasting the .MDB file with
the file handling facilities of My Documents or My Computer.

77

7 The story so far

Revisit the big four

In the next five chapters we’ll take a longer, harder look at each of the compo-
nents in turn, explaining capabilities and demonstrating their use. This will let
you hone your simple database to the peak of perfection where only fine up-
standing data is permitted to enter its hallowed table, where stylish forms
beckon the user, where queries surprise and reports satisfy. Enough of this hy-
perbole; here comes Chapter 8.

78

7 The story so far

Part III

Creating hand-crafted
databases

Chapter 8

Exploring tables in more depth

What more could you possibly need to know?

So far we’ve looked at the quick and easy routes to creating tables provided by
Access wizards. They offer a degree of flexibility which will cover the needs of
most simple databases and if you never feel the need to delve any further, that’s
fine. However, databases frequently develop over time. Once the basics are in
place and a table is used in earnest, all sorts of other possibilities and ideas pop
up and these go beyond what’s possible at the level described thus far.

When a wizard isn’t enough

There are things that the wizard can’t do but Access is full of extra functionality
to achieve practically everything you can imagine. For instance, it’s perfectly
possible to ensure that only ‘Mr’ and ‘Ms’ are permitted as entries in a Title
field (though whatever titles you choose these days, someone somewhere will
be offended). It’s not difficult to set this up but you can’t do it with a wizard.

Modifying a wizard’s work

Even when your needs outstrip those met by wizards, they are still very useful.
You can use the Table wizard to build the basic data storage table and then you
can add further refinements to that table using the other tools Access provides
(as we did with the TestCalc form in Chapter 5). However, in order to make
meaningful changes to the structure of a table you need some background
information.

81

Primary keys

You have already found that Access is almost obsessed with primary keys; ev-
ery time you use the Table wizard Access tries to make sure that you add one. A
primary key is a field (or fields) that contains a unique value for each record. For
example, you might have a table of employees within a company. Each person
will have a national insurance number (UK), social security number (US) or
equivalent, that is unique to that person. So if you decide to include a field in
the table which holds that number, then that field is perfect as a primary key.
Unlike people, most items aren’t issued with a government-defined number
(thankfully). However, items used within a company are often numbered for
convenience by that company – think about order numbers, part numbers etc.
Again, these are often chosen to be the primary key value in a table. Even if you
create a table of information about your friends and relations, it’s a good idea to
give the table a primary key. This doesn’t mean that you have to find out your
cousin’s social security number, you can simply set up a field called, perhaps,
ID and put a 1 in that field for the first record, a 2 for the second and so on.

This tells us what a primary key does – the value in the primary key field
uniquely identifies every record in the table. But it doesn’t tell us why each ta-
ble needs a primary key. The answer is that primary keys are essential when we
start to use multiple tables together in a single database. We’ll start to do that in
Part IV whereupon primary keys will begin to make more sense. However, we
will still be making sure as we work that every table has a primary key. The field
chosen by the Table wizard during the building of a table, or when you save a
manually-built table, will be fine.

Incidentally, I said above that ‘a primary key is a field (or fields)’ and this is per-
fectly true – a primary key can be made up of two or more fields, although it is
often composed of just one. We’ll touch on this again in Chapter 15 in the sec-
tion called Many-To-Many relationships.

82

8 Exploring tables in more depth

Data types

Tables store data and data comes in many different flavors. Access lets you de-
termine the type of data that will be stored in each field and it is a good idea to
try to match the data type to the type of data (if you see what I mean!) that you
intend to store in that field. As a simple example, suppose that you create a table
of the stock held in a warehouse. The table might be called ‘Stock’ and have
three fields – PartNumber, Name and Stock:

If we ignore PartNumber for the moment, it is clear that Name is supposed to
contain text-type information and Stock (the number of items in stock) is des-
tined to contain numbers. Therefore, the data type for Name is text and the data
type for Stock is number. Simple. In fact, telling Access what data types to use
brings several benefits.

For a start, Access can prevent you from putting the wrong data into a field:

In addition, choosing the right data type can save storage space, making your
database leaner and faster as we’ll explain at the end of the chapter.

83

8 Exploring tables in more depth

So data types are worth knowing about and we’ll look at each of the data types
and the sort of data you’d store in each. The table below lists all the possible
types.

The number data type is subdivided into seven field sizes for dealing with dif-
ferent numerical ranges (see below). Some are very much more commonly
used than others. It’s useful to have a feel for everything that Access can handle
but you’ll probably find that you mainly use long integer and single in practice,
so you probably don’t need to spend too long studying the other types that are
on offer.

To demonstrate data types, we’ll create a table called DataTypes in a new
database of the same name. From the Tables tab in the database window, dou-
ble click ‘Create table in Design view’.

84

8 Exploring tables in more depth

Data type Field size property

Text

Number Byte

Integer

Long Integer

Single

Double

Replication ID

Decimal

Date/Time

Currency

AutoNumber Long Integer

Yes/No

Lookup wizard

Hyperlink

OLE Object

Memo

You’re now in an entirely blank table design area where you can define the
fields.

The top panel of the dialog is divided into rows and columns. Field names, data
types and descriptions are entered here. Beneath this lies the Field Property
panel where the properties of each field are defined. The box to the right dis-
plays handy tips, determined by the position of the cursor.

Selecting data types

In the Field Name column, type a name for the field: we’ll use Text.

� Clearly using the name of the data type isn’t normally to be recommended, you’d use a
name likeFirstName orCompanyName, but we’ve designed this table just to demon-
strate the different data types.

85

8 Exploring tables in more depth

�

Press the right arrow key, or Enter, or click in the adjacent cell in the Data Type
column. The default data type is Text, which happens to be fine. However, just
to show you how it works, click the arrow button at the right of the cell,

and a list of all available data types pops down. If you wanted something other
than text for this field, you’d select it here.

Add a few words about the field in the Description column if you wish; this isn’t
obligatory but can be helpful if field names are vague. Hint: don’t use vague
field names!

Data type: Text

A field of the text data type is used for storing text: no surprises there. Names,
addresses, descriptions of products, colors and countries would sit happily in
the text category. Numbers as well as characters can be entered in text fields as
in an address like 1054 Penguin Boulevard. The numbers in an address are like
a label; they’re never used mathematically. (When did you last calculate the av-
erage house number of your friends?) Indeed, the different ways in which
numbers are used is generally worth bearing in mind. Phone numbers are nu-
merical, but as you never multiply one by another, they are more properly
stored in a text field. This prevents other problems too. Any leading zeros
(which every number has if the full international rendition is used) are trun-
cated by numerical formats. Also, it’s common to use spaces, dashes and even
brackets in phone numbers and these are disallowed in any of the numerical

86

8 Exploring tables in more depth

field types. So, always store telephone numbers in a text field unless you have a
very good reason to do otherwise.

Serial numbers and other codes used for identification are always stored as text
if they contain any text characters. Only if they are entirely numerical (without
any leading zeros!) is it reasonable to store them in a field of type Number.

The table below shows examples of text data.

So, in the Stock table mentioned above, it should now be clear that the
PartNumber field, despite having ‘Number’ in the field name, should actually
be of data type text.

� The text data type can also be called an alphanumeric data type. This is perhaps a better
term as it makes it clear that as well as holding letters of the alphabet, numbers can be
stored too.

87

8 Exploring tables in more depth

�

Field name Data type Example entry

Surname Text Campbell

Address Text 124 East Street

State Text CA

Serial Number Text TFH1567-8/R

Phone Number Text (000) 444-444

Fax Number Text 001 000 888 999

License Number Text XGN 845 G

Stock Code Text 0000345

Data type: Memo

This is a useful data type for fields with a large but variable amount of alphanu-
meric text, such as additional notes or background information. Up to 64,000
characters can be stored (that’s about 24 pages of an average paperback novel)
but happily the space taken up is determined by the length of the entry so none
is wasted by storing shorter entries or by not having an entry for some, or even
most, records. If you were creating a table of data about restaurants, you would
store the establishment’s name in a text field but notes about the ambiance in a
memo field. The entries in memo fields can be searched but cannot be indexed
(see below). Add a memo field called Memo to the table.

Data type: Number

When you select the data type Number, the Field Property panel allows you to
select one of seven separate Field Sizes which are outlined briefly in the table
below.

88

8 Exploring tables in more depth

Field size Range Decimal
places

Storage
space/record

Byte 0–255 0 1 byte

Integer –32,768 to 32,767 0 2 bytes

Long Integer –2,147,483,648 to 2,147,483,647 0 4 bytes

Single –3.4 × 1038 to 3.4 × 1038 7 4 bytes

Double –1.797 × 10308 to 1.797 × 10308 15 8 bytes

Decimal –1028 – 1 to 1028 – 1 28 12 bytes

Replication ID globally unique identifiers (see below) NA 16 bytes

� When is a data type not a data type? Sticking strictly to Access’ terminology, Number is
a data type and its subdivisions (byte, integer et al.) are field sizes. In common parlance,
however, byte, integer and so on are referred to as data types so we’ll stick with that.

These seven data types have different properties, notably different storage re-
quirements. At the end of this chapter is a discussion of storage requirements
vs. speed.

Selecting the field size

Type in the field name ‘Number’. The data type defaults to text so click the but-
ton in the Data Type column and select Number. In the Field Properties panel,
the General tab is current and the first item in its list is Field Size. The default is
Long Integer. Click to place the cursor in the field size cell and click on the but-
ton that appears. A list of seven choices pops down. Make your selection here.

� We are about to enumerate all of the numerical data types for the sake of completeness. If
you aren’t mathematically inclined this may begin to get tedious. If it does, use the fol-
lowing simple rule: most whole numbers can be stored happily in the default type which
is Long Integer. If your number is going to include decimal values (like 1.23) then choose
Single. If that sounds fine for the moment, feel free to skip to the section headed Data
type: Date/Time.

Data type: Number – Byte

The Byte data type can store numbers between 0 and 255. Many pieces of data
fall within the bounds of the byte field: it’s perfect for household inventory

89

8 Exploring tables in more depth

�

�

fields, for instance. Even the cleanest family is unlikely to hit the 255 limit for
washing machines and such devices rarely occur in thirds or halves. Byte
cannot store negative numbers... but that is OK for washing machines as well.

Data type: Number – Integer

Useful for numbers that can be negative and that also have a range greater than
255 but less than 32,000 odd. Great for the number of pupils in a school or em-
ployees in a small to medium sized enterprise.

Data type: Number – Long Integer

Long integer is the default data type. Even larger numbers can be stored in the
long integer data type (minus two to plus two million and then some) and
many applications will never approach the upper or lower limit. Useful for or-
der numbers for a company of reasonable size. You still can’t store decimal
places in this field type so a number like 3.14159 is right out.

Data type: Number – Single

These numbers are getting ever more vast but, perhaps more importantly, you
can finally store decimal values so you can enter a number like 3.14159. Up to
seven decimal places are permitted.

Data type: Number – Double

Even more mind-stretchingly huge numbers can be stored in the double field
type. Given that there are about 1073 particles in the observable universe (last
time I looked) the limit of 1.797 × 10308 is probably adequate for most purposes.
This data type can also store even more decimal places. Wow.

Data type: Number – Decimal

This one’s for huge numbers where high levels of precision are required. Num-
bers can be quoted to 28 decimal places, which should be enough for most
mortals.

Data type: Number – Replication ID

The replication ID field stores globally unique identifiers (or GUIDs for short.
This can be pronounced as ‘goo-id’ or possibly even like ‘good’ with a strong

90

8 Exploring tables in more depth

Scottish accent. Your choice.) GUIDs are used to identify the components of a
database for use in the process of replication.

� In a nutshell, replication helps to allow users who are disconnected from a shared data-
base to work with data from that database. The bottom line is that if you are new to Access
you probably don’t want to worry about this data type yet.

So there are lots of different numerical data types. Choose whichever one takes
your fancy for the table you are creating.

Data type: Date/Time

If you want to store a date, you might argue that you simply need to use a text
field because in there you can type ‘January 1 2001’. True, you can. The problem
with doing this is that Access will store it for you as text and won’t be able to
perform so-called ‘Date Arithmetic’ on that date. For example, it won’t be able
to work out that there are 36 days between the 1st of January and the 7th of Feb-
ruary in the same year, or that if Helen’s date of birth is the 12th of September
1963, on the 22nd of October 2003 she was 40. We manipulate dates all the time
and we often want Access to do the same for us. However, in order for Access to
do this, we have to use a Date/Time field.

� When a date is entered into a Date/Time field, it is actually stored behind the scenes as a
number and Access uses that number to work out the answers we want. For example, the
date 16th August 2003 is stored as 37849. The same is true for time: you can’t just type
15:24 in a text field and hope that Access knows it’s temporal information meaning “get-
ting on for half past three and time for a cup of tea”. Instead you type, say, ‘16 August
2003 15:24’ into a Date/Time field and Access will store it as 37849.6416666667

Add a field called Date/Time to the table. (In fact, add one of the appropriate
name for the rest of the data types once you’ve read the descriptions below.)
Date and time data can be displayed in different ways: these are discussed in
the section called ‘Investigating the main properties of fields’ later in this
chapter.

Data type: Currency

This is just what it seems, a field for storing values which equate to currency val-
ues. Up to four decimal places are permitted, with up to 15 digits before the dec-
imal point.

91

8 Exploring tables in more depth

�

�

Data type: AutoNumber

This data type generates a series of numbers, automatically incremented by
one. The most common usage is as an ID field for use as a primary key. So, after
you have added an AutoNumber field called AutoNumber to your table, with
the cursor still on that field, click on the Primary Key button (the one with the
key symbol). The field should acquire a key symbol at the left hand side of the
table.

It is conventional (but not essential) to put the primary key field(s) at the top of
the table. You can move fields around as follows. Click on the key symbol to the
left of the AutoNumber field and the entire row should highlight.

92

8 Exploring tables in more depth

Release the mouse button, and then click in the same place, but hold the mouse
button down. Now slide the row upwards to the top of the table and then
release the mouse button.

As I said, you don’t have to follow this convention but it does make life easier
(you always know where to find the primary key) so why flout accepted
wisdom?

When you tell the Table wizard that you want it to provide a primary key, it
adds an ID field of the AutoNumber data type to the table. Every time you add
a record, Access assigns it the next number in sequence and writes it into the
AutoNumber field.

The AutoNumber data type is, in fact, simply a specialized form of Long Integer
field so the values stored in an AutoNumber field are actually just long integers.
You may feel that you don’t really need to know this, but this factoid becomes
important when we start using multiple tables.

Data type: Yes/No

There are many pieces of information that are either one thing or the other,
without shades in between (for database purposes, anyway – human beings are
past masters of ‘yes, but...’ exceptions.) Do you have a current driving license?
Have you ever been in Canada? The Yes/No data type stores the response
neatly in a mere 1 bit. (In other words, the information is stored very efficiently,
which means that less disk space is wasted.) Once again, like dates, you could
use a text field and store ‘Yes’ or ‘No’ but it is better to use a Yes/No data type be-
cause then people won’t enter ‘Yup’, ‘Naah’ or any other unhelpful variant. A
Yes/No field will, by default, accept simply a check (referred to as a tick if you
live east of the Atlantic) for yes and a lack of a check for no so people can input
the information using a mouse.

93

8 Exploring tables in more depth

Data type: OLE Object

OLE stands for Object Linking and Embedding – this data type allows you to
link to, or embed, an object from outside Access into a table. Such an object
might be an Excel spreadsheet, a Word document or an image. So if you had a
spreadsheet holding details of employees’ expenses, you could access it from
within Access using a field of the OLE Object data type.

Data type: Hyperlink

This data type is potentially very useful for the web aware (and who isn’t aware
of the web nowadays?). A hyperlink field can contain a URL so your table could
contain the location of, say, a person’s home page. Any entries in this field are
formatted to appear blue and underlined, the classic look for URLs. Hyperlink
fields can also contain UNC paths to point to a specific file either on your PC or
on a server.

� A URL is a Uniform Resource Locator and is used to point to a specific place.
http://www.msn.com is a typical URL. A UNC path is Universal Naming Con-
vention path which acts in a similar way but points to a shared folder and file on a PC or
file server, like this: \\machine\folder\filename.mdb.

If you provide your users with a hyperlink data type, the implication is that
they may want to enter hyperlinks into the database. As most people are aware,
hyperlinks themselves can be rather complex, for example:

http://office.microsoft.com/assistance/
preview.aspx?AssetID=HA010916581033&CTT=98

94

8 Exploring tables in more depth

�

Few people will want to type such a long string of characters into the field. Hap-
pily, they don’t have to. Let’s assume you have created a table with a hyperlink
field and you are now entering some data. You right click on the hypertext field
and select Hyperlink, Edit Hyperlink. The Edit Hyperlink window opens. From
here you can browse to the required file and/or, assuming that your machine
has a connection to the Internet, even to the required web page.

Clicking OK puts the UNC path or URL into the table: the next screen shot
shows one of each.

The full UNC path is not shown in the field, only the file name. If you want to
see where the file originates, right click in the field, move the cursor down to
select Hyperlink and then click Edit Hyperlink.... This opens the editing
window shown above and lets you see where the link is pointing.

Data type: Lookup wizard

The Lookup wizard isn’t really a data type but it appears in the list of data types
so we’ve included it here. This is a very useful device for keeping data within
bounds. The Lookup wizard gives you control over the entries that are allowed
in that field. If you only want the responses Blue, Green, Red or Purple in a
field, use the Lookup wizard type. You can either determine the permitted en-
tries when you’re building the field with the wizard or you can set the field to
refer automatically to data from another table.

95

8 Exploring tables in more depth

Type in a field name and select the Lookup wizard. The wizard runs and asks
where the permissible values will come from.

� You can also run the Lookup wizard from Design view by clicking on Insert in the main
menu and choosing Lookup Field...

We’ll try typing in the values so choose this and click Next. The wizard suggests
a default of one column. In the single column table start typing the allowable
entries; as soon as you start typing an entry, a new row appears in the table.
Build up a ‘table’ looking like this.

96

8 Exploring tables in more depth

�

Click Next, type a name for the lookup column (for this example it’s
ColorList) and click Finish. The data type has reverted to text (but see below)
and the Field Name has changed to reflect the name you gave the lookup
column. Check out the properties in the Lookup tab and in the Row Source cell
you’ll see the valid entries.

Click to save the table and swop to the Datasheet view. When the cursor is
placed in the ColorList field, a button appears giving access to the list of per-
mitted entries.

97

8 Exploring tables in more depth

If you try to type in anything other than these precise entries, you’ll find you
can, which seems to negate the whole idea. Swop to Design view and check out
the last property on the Lookup tab. It says ‘Limit to list’. Aah. Click to see the
options and select Yes.

When you make this change, you may notice that a bolt of lightening icon
appears alongside the property.

This is the Property Update Options icon and clicking it reveals two options:
one is to ‘Update all lookup properties everywhere ColorList is used’ and the
other is Help.

98

8 Exploring tables in more depth

As the option suggests, it offers a way of automatically reflecting the change
we’ve made in every instance where the ColorList lookup is used. It’s of limited
use at our present early stage of learning about Access, but this feature will
come into its own in Chapter 11. Don’t select either option for now.

Back in table view, try entering Mauve. Access beeps when you try to leave the
field and the message window tells you to pick one from the list.

Your lookup list is now functioning and will not permit entries other than those
you specified.

In our example, we accepted the default data type which was text but you don’t
have to do this. You might, for example, provide the values 1, 2 and 3 and then
set the data type to numeric: it’s up to you. However, if you do something logi-
cally questionable, like setting up a list of colors and then set the data type to be
numeric, Access will, quite reasonably, object when you try to enter data.

� Lookup fields can certainly be useful when used in the way described above. However, we
have reservations about using them to create automatic references to data from another
table. The reasons for this are explained in Chapter 20: this is because the explanation
will make more sense once we’ve done a little work with databases that comprise more
than one table.

Summary so far

We have had a look at the different data types that are available in Access, and a
sample table, DataTypes, containing examples of each is available in the file
called chap8datatypes.mdb. You can create a form for this table using
AutoForm and then play around entering data into the different fields. Most of
the results that you get will be self-explanatory as soon as you see the end
result. However, a couple of points may be worth noting. One is that you can
enter text into the hyperlink field and if you double click on the entry,
Windows will try to connect you to that URL. What happens next depends on

99

8 Exploring tables in more depth

�

whether you have a current internet connection and also how your computer is
set up. A browser may open up showing the web page or, if you don’t have a
current internet connection your computer may try to establish a contact to the
internet. Or you may get an error message, such as:

Another point is that if you want to insert an object into the OLE field, right
click in the field, select Insert Object and then use the dialog box to choose the
options you want.

It is worth spending some time playing with this until you are happy that you
have a feel for the sort of data that is best suited to the different data types that
Access offers.

Controlling data entry

OK, so you now know how to construct a table that can hold the correct type of
data. The next stage is to learn how you can modify the table so that, as far as is
feasible, only correct data ends up in that table. To be of real value, your data
must be as accurate as possible. Unfortunately, most data is entered by people
and people don’t always function with 100% accuracy. Access recognizes that
we’re only human and provides several ways of improving the accuracy of data
that gets into a database.

100

8 Exploring tables in more depth

One way, which we have already covered, is to use the lookup wizard. Users no
longer stare at a field labeled ‘Grade’ wondering whether they should enter
‘A++’, ‘Yes’ or ‘NA’; they’re able to pick an answer from the range supplied.

� Controlled data entry also helps keep humorists in check. No longer will a field labeled
‘Sex’ hold such side-splitting entries as ‘Yes please’. Not that I have anything against
humor, indeed if I had to lose one or the other then databases would have to go. With any
luck though, we should be able to keep both.

Another way in which Access can help is to look for an expected pattern in the
incoming data, which brings us to input masks.

Input masks – the background

An input mask lets you control data entry into a field to a remarkable degree.
Using such a mask you can ensure that, for example, serial numbers are always
entered in the format 456-78 (23) and that data always conforms to a required
pattern, such as two characters followed by a dash and then three numbers.
This is particularly useful for numbers that are forced upon us by bureaucracy:
social security numbers, license numbers, permit numbers and so on. They are
also invaluable within companies where you may know that, for instance, part
numbers always conform to the format AA-111.

101

8 Exploring tables in more depth

�

The mask itself

The input mask is built up from various characters and symbols which acquire a
special meaning in the context of masks. These are shown below.

If you wanted a serial number field to contain entries in the format three upper-
case characters, dash, five numbers (ABC-12345), the mask would look like this:

>LLL\-00000

If serial numbers like AB-123 and A-1 were also valid (i.e. with variable numbers
of letters and digits, though at least one of each) the mask would look like this:

>L??\-09999

102

8 Exploring tables in more depth

Character/
symbol

Description of action

0 digit (0–9, entry compulsory)

9 digit or space (entry optional)

digit or space (optional; blank positions appear as spaces)

L letter (A–Z, compulsory)

? letter (A–Z, optional)

A letter or digit (compulsory)

a letter or digit (optional)

& any character or a space (compulsory)

C any character or a space (optional)

. , : ; - / Decimal point, thousands, date and time separators

< all subsequent characters will appear in lowercase

> all subsequent characters will appear in uppercase

! causes the input mask to display from right to left, reversing the
default. Can be positioned anywhere in the mask

\ the subsequent character is displayed literally. Displays any of the
characters listed in this table as literal characters (i.e. \& appears as
&)

Creating an input mask

Create a new table, add a text field called SerialNumber and, in the General
properties tab, you should find a property called Input Mask. Type in the
following:

000\-00" ("00\)

� Anything inside double quotes is also displayed literally.

There is no immediate reason why this cannot be a primary key field, so, in
your best Star Trek manner, make it so.

You should then find that you can only enter numbers in the form:

123-12 (12)

� If you experiment and make changes to the input mask, once again the Property Update
Options icon appears. If it bugs you, turn it off for the time being by clicking Tools, Op-
tions and on the Tables/Queries tab, de-select ‘Show Property Update Options buttons’
using the check box.

103

8 Exploring tables in more depth

�

�

Input masks are easy to create and efficient in use. If required, you can invoke a
wizard to create some for you, just by pressing the ellipsis button (the one with
three dots)

that appears in the last but one screen shot. However, it is essentially just as
easy to create your own.

In fact, input masks can be made more complex than this. We’ve shown a mask
with just one element: in fact they can have three elements, the other two
allowing a degree of fine control that’s not used all that commonly. They’re
covered in a section called ‘More on input masks’ towards the end of the
chapter but it certainly isn’t required reading at this stage. The following digres-
sion, we think, probably is.

Herein a brief digression on postal code and
phone number problems

Storing certain kinds of data in databases is challenging. (We don’t
have problems, we have challenges). Both postal codes and tele-
phone numbers fall into the ‘challenging data’ category which is a
shame because we often want to store precisely those pieces of in-
formation about people.

For a start, in countries like the UK, post codes (the UK specific
form of a postal code) and telephone numbers don’t conform to a
standard format. For example, DD1 4HN, SW1A 4WW and M1
3GU are all acceptable post codes in the UK but have different for-
mats. The first is 2 characters, 1 number, space, 1 number, 2 charac-
ters, the second is 2 characters, 1 number, 1 character, space, 1
number, 2 characters and the last one is 1 character, 1 number,
space, 1 number, 2 characters.

� Incidentally, UK users should be wary of the Postal Code mask offered by
the Input Mask wizard when you click the ellipsis button in the Input
Mask field. There are many postcodes that it will not accept. For example,
not one of the three shown above can be entered into the field with this mask
in place. Oh, and many UK phone numbers won’t fit into the Phone Num-
ber mask either...

Even if you live in the US where formats are more controlled, the
problem is only dormant. We are now part of a global economy, so

104

8 Exploring tables in more depth

�

some/many of your contacts may be in countries other than your
own. Different countries have different systems (of varying
degrees of complexity) and this lack of uniformity makes it very
difficult to write an input mask that works in all eventualities for
postal codes and local variations on phone number formats: it’s
likely to be impossible if you deal with data from many countries.

However, this brief diatribe does not mean that input masks are
worthless: there are many occasions when data does conform to a
strict standard. Within a company, for instance, employee num-
bers or part numbers often fall into this category and their entry
can readily be controlled with masks.

Investigating the main properties of fields

Objects have properties and the fields in an Access table are no exception. The
properties of each field in a table can be set from the Design view, more specifi-
cally in the Field Properties panel which we introduced towards the beginning
of this chapter.

The list of properties varies with the data type of the field; number fields have a
Field Size property, as already discussed. Other data types lack this property
but are imbued with others. We’ll have a look at the main properties – these are
the ones that you’re most likely to need to understand when getting to grips
with table design.

105

8 Exploring tables in more depth

Format

Every data type except OLE Object has a format property with predefined for-
mats for the date/time data type.

� The Short Date format assumes dates between 1/1/00 and 31/12/29 are in the years 2000
to 2029. Dates between 1/1/30 and 31/12/99 are assumed to be twentieth century dates,
i.e. the years 1930 to 1999.

To demonstrate the various date/time formats we have created a table where
they are set differently.

106

8 Exploring tables in more depth

�

� We happen to be doing this in the UK where the Windows default is set to dd/mm/yyyy
rather than mm/dd/yyyy. So 12/01/1967 would be the 12th January 1967 rather than 1st

December 1967.

Predefined formats are also available for the currency data type.

All currency fields also have a Decimal Places property which can be set to the
desired accuracy.

107

8 Exploring tables in more depth

�

The Yes/No data type also has three formats:

If it’s more appropriate to the data being entered, the field can be set to
True/False or On/Off format. True, Yes and On are equivalent responses and
False, No and Off are also equivalents.

� When storing Yes/No data, Access uses –1 to mean Yes and 0 to equal No. This sounds
positively perverse to the non-mathematical though, in fact, there is a deeply theoretical
and (reasonably) reasonable reason for this choice. For an easy life let’s just accept the
weirdness hit.

So, what is the point we are trying to make? There is an important distinction
between the data type and the format. The data type controls the data that can
be entered into a field, the format property controls the way in which the data
appears to the user. In a sense the former provides an absolute control over the
value stored, the latter simply controls how the value is perceived. The two can
be used in a variety of ways. For example, you may well want to store some val-
ues to a high degree of accuracy, but display them with only integer accuracy.
This can be achieved by mixing and matching the data type and the format.

108

8 Exploring tables in more depth

�

Caption

All field types have a caption property. If you enter a caption, as we said earlier,
it will be used as the field label in any form based upon the table, even
AutoForms, and as the column header in the Datasheet view of the table. If you
don’t use captions your fields are still labeled because the field name will be
used instead.

Captions can be up to 2,048 characters long, which is probably more than
sufficient.

Default Value

This property can be held by all fields except AutoNumber and OLE Object.

The Default Value property specifies a text string or a number that will appear
automatically in a field when a new record is created. For example, if most of
your customers are based in Switzerland you might have a Country text field
with the default value set to ‘Switzerland’.

When you need an entry for another country, you simply start typing. The de-
fault entry is highlighted when your cursor arrives in the field and is deleted as
soon as you type.

The maximum length for a default value is 255 characters. A default value can
also be an expression; these are covered below.

Validation Rule

Like Default Value, this property can be ascribed to all fields except
AutoNumber and OLE Object. Access undertakes some data validation auto-
matically, precluding text from being entered into any of the number fields, for
instance. If you want a further level of validation, you can set a rule by which
any entry must abide.

For example, imagine you run a Botanic Garden, need to store the date on
which a plant variety was acquired and want to ensure that it always falls be-
tween the date you started your collection and today’s date. We can demon-
strate this using the Date/Time field in the DataTypes table.

109

8 Exploring tables in more depth

Open the table in Design mode, click in the Validation Rule row and enter the
expression:

Between #01/01/89# And Date()

� Hints: ‘Between’ is a comparison operator. ‘Date’ is a built-in date/time function that
supplies the current date.

If you’ve just added a couple of records for experimentation purposes as we go
along you may see the following message when you save the table:

As our data is only experimental, click No.

110

8 Exploring tables in more depth

�

� If you had real data in the table, clicking Yes would start Access testing to see if the dates
complied with the new validation rule. If they didn’t, you’ll see another message:

from which you’d select a course of action.

With the validation rule in place, if you try to enter a date that is outside these
limits, Access refuses to accept it.

Incidentally, Access provides an Expression Builder to help you to compose
expressions like this. You can get it by clicking on the Build button – that’s the
one with the ellipsis that appears when your cursor is in place to enter a Valida-
tion Rule.

The Expression Builder appears and lets you hunt through the functions

111

8 Exploring tables in more depth

�

and operators

and build the expression you want by pasting in your choices instead of typing
everything. This builder can be particularly useful when you are starting to use
Access and aren’t familiar with all the functions and operators that are
available.

Validation Text

The Validation Text property goes hand in hand with the Validation Rule prop-
erty. You can define the message seen by users if an attempt is made to enter
data which does not conform to the validation rule. ‘Try again, dummy’ proba-
bly won’t win any prizes for diplomacy; ‘Ensure the date is between 01/01/89
and today’s date’ is more tactful. You have 255 characters in which to express
yourself.

If you set a validation rule but no validation text, Access displays a standard er-
ror message when the rule is violated (see above).

Type the error message you want into the validation text slot. The error mes-
sage appears with a warning triangle if invalid data is entered.

112

8 Exploring tables in more depth

Required

The property Required can be set to either Yes or No. If an entry into a field is
obligatory, set this property to Yes. If you must know whether a person was
born in Italy to make any sense of the rest of the data collected, ensure the Re-
quired property is set to Yes.

Indexing

This property lets you define what is called an ‘Index’ on a field. Indexes (more
correctly, the plural of index is ‘indices’, but most people say indexes) are
wonderful. Suppose you have a table that stores a list of the employees in your
company. You regularly search through this looking for particular people,
locating them using their last name. If you put an index on a LastName field,
your searches will run much faster, often by one or more orders of magnitude.

The three options are shown below; the default is No index.

For use with a LastName field the ‘Yes (Duplicates OK)’ would be the one to
choose as it’s quite possible you’d have employees with identical last names.

Primary keys are, by default, indexed automatically in Access with the ‘Yes (No
Duplicates)’ option. Access also lets you have as many other indexes as you
want so you may be tempted to index every field immediately. However, each
index you create takes up some disk space and, with a large table, too many in-
dexes can slow down data entry. So use them sparingly but on the other hand
don’t be afraid to use them because the speed gains are tremendous.

� You will notice that we are saying, in effect, that there is no hard and fast rule here. You
will have to use your judgment and/or you will have to experiment to find the best bal-
ance of indexes for a particular database. As you start to build more complex databases,
these judgment calls (about indexes and other components) become more important. This
is why, for me at least, designing databases is such a delight; it becomes both a science and
an art. There is real satisfaction in creating a fast, elegant database.

113

8 Exploring tables in more depth

Setting Description

No index

Yes (Duplicates OK) The index permits duplicates

Yes (No Duplicates) The index doesn’t permit duplicates

�

Having said that, there is one place where an index is almost always worth ap-
plying and that is a foreign key field. You haven’t met these yet, but they are
covered in Chapter 15.

Summary of field properties

Field properties allow you to modify the way in which your table behaves. We
haven’t covered all of the possible options, but we have covered those proper-
ties that you’re likely to need for the first databases you build. As you gain expe-
rience it’s worth having a look at the rest of the properties to find out what they
do.

Choosing the right data type means leaner,
faster databases... up to a point

We said earlier that choosing the correct data type could make your database
leaner and faster. To a large extent this has to do with size. If you want to store,
say, the number of children that people have, you could choose the Byte data
type (which would be the most appropriate). Choosing Decimal is a mistake be-
cause a user of your database might enter 3.187. Accepting Long Integer (the
default) would be OK, except that it takes 4 bytes of storage space per record. I
don’t know anyone with two million children (nor with minus two million) and
the 255 allowed by Byte are probably enough. So, Byte is fine, but what does it
matter if you choose Long Integer? The answer is – it depends: it is a matter of
judgment.

Look at it this way. Choosing Long Integer wastes 3 bytes per record. If you ex-
pect your table to have, say, 1,000,000 records, then your table will be 3,000,000
bytes = 3 Megabytes larger than if you had chosen Byte. Those extra 3 Mbytes
matter, both in terms of storage and database speed. But if your table is only
likely to have 50 records, then the wastage is trivial and not worth worrying
about.

In the bad old days when computers struggled for disk space and power, we
advocated choosing data types with great care. Given the power and capacity
of modern machines, we think it is foolish to worry unless your databases are
likely to become huge. In other words, be aware of the issue but don’t become
obsessed.

114

8 Exploring tables in more depth

Summary

In this chapter, we’ve introduced data types and properties, two major meth-
ods of ensuring that the data in your tables is accurate. Using the most suitable
data types for your data means that it can be handled quickly and accurately by
Access. The properties of the fields in a table let you control entries as they’re
typed in and how they look once they are in.

Playing with the various data types and properties with a dummy database is
an excellent way to get a feel for what they all do.

Not required on voyage

� The information in the remainder of this chapter isn’t required reading for your first
database. However, it expands some of the topics covered in this chapter. For your first
run through the book we actively advise that you don’t read it but it may be useful for ref-
erence purposes later.

More on input masks

We said that input masks have three elements and that the first is the most use-
ful and is covered above. As for the other two...

Displaying separation characters

The second element of the input mask determines whether the literal separa-
tion characters, for example (and - in our (123) 123-1234 example above, are
stored in the field. These characters are often used to make the information
more readable but it’s not always necessary to store them.

There are two options for this:

• a 0 stores separation characters with the values
• a 1 (or a blank, i.e. not specifying this element of the mask) stores values with-

out separators

As we said, this element of the input mask is placed after a semi colon. So, for ex-
ample, if we use this mask:

000\-00" ("00\);0

115

8 Exploring tables in more depth

�

numbers will be stored like this

123-45 (67)

in the table, but with a mask like this:

000\-00" ("00\);1

numbers will be stored like so:

1234567

� Unfortunately, Access’ super-helpful interface shows entries made with both these input
masks as looking identical when data is viewed in the table. The brackets, space and dash
appear for numbers entered using both masks.

However, this feature is still useful when you export data as, for example,
comma separated values (.CSV) or plain text (.TXT) format.

Displaying blanks

The third element determines the character that’s displayed in the input mask
to indicate where the entry should be typed: this character is known as a place-
holder. You can use any character, for instance, * displays a star character. If
you omit the third element, the default character is the underscore (_).

These are examples of complete input masks:

(000) 000-0000;0
(000) AAA-AAAA;0;*
#999;1;-
>L????L?000L0;1;" "
>L0L 0L0

116

8 Exploring tables in more depth

�

And now more about the properties of a field...

Nulls

We are about to look at the Allow Zero Length property but before we do, we
need to cover the topic of nulls, primarily because a zero length string is mainly
defined in terms of ‘not being a null’ and if you haven’t met nulls yet, this defi-
nition will be totally unhelpful.

OK, so what is a null? Well, consider this statement as (allegedly) heard on a ra-
dio station. ‘Well, it’s good news for all you hay fever sufferers – the pollen
count today is zero... because all the pollen counters are on strike.’

The joke has an added piquancy for database fanatics because it hinges on the
confusion between a value and a null value. A well-designed database recog-
nizes the fact that some data may be unavailable to the database and that uncol-
lected data is not the same as zero. You would never really enter a zero if the
pollen counters were on strike, so the field for today’s pollen count would, in-
stead, contain a null.

Imagine now that you are entering data into a table (either directly, or via a
form, it doesn’t matter). The table has four fields and none of them has a default
value. You move to a new record, put the cursor into one of the fields and enter
a value. Then you save the record and close the table. You haven’t explicitly put
anything into the other three fields, so they have nothing in them. More cor-
rectly, the three fields contain null values.

So, back to the question, what is a null? A null is an absence of data. It is not a
blank, it is not a zero, it is an absence of data.

Does this distinction matter to anyone other than hay fever sufferers? Yes.
Suppose that you have a class of thirty pupils. You have entered the name of
each into an Access table which therefore has 30 records. You have marked 20 of
their essays and placed those marks in the table, again in a field without a
default value. So far so good. Now you ask Access for the average mark gained
(this can be done with a query). Access adds up the marks so far and then
divides that total by... what? 20 or 30? The answer is that Access knows that a
null is not the same as a zero, it sees only 20 entries for the essay mark (despite
the fact that there are 30 records) so it divides by 20. If you had set the default
mark to be 0 then there would be thirty entries, ten of them would be zeros.
Access would have divided by 30 and you would get the wrong answer.

117

8 Exploring tables in more depth

Allow Zero Length

This property applies only to Text, Memo, Hyperlink and Lookup fields and
sounds simple but it is worth looking at in detail – which means we have to
backtrack a little.

So first, what is a ‘zero length string’? It’s a field into which double quotation
marks without a space between them have been entered. Oh, so it’s a null. No,
it is similar to, but not quite the same as, a null.

You could be forgiven for thinking that we are beginning to get very pedantic
about all this, so consider a table that is used to collect names. We have four
fields:

FirstName

SecondName

ThirdName

LastName

You start entering names. The first person has three forenames: he’s Anthony
Aloysius St. John Hancock. No problem, all four fields have entries.

The next person is John Smith. You don’t know if he has a second and/or a third
name, so you enter the first and last. The result is that SecondName and
ThirdName contain nulls. This is still fine.

Finally, Sally Jones appears. You happen to know her well and you know for a
fact that she has no other names. So you leave the middle two fields blank. But
wait, those fields now contain null values, exactly as they do for John Smith. But
we know that Sally doesn’t have middle names, which is not at all the same
thing as being unsure. If you use a null it implies that you don’t know. So, fi-
nally, we find out what a zero length string is for. You can use it for Sally’s
SecondName and ThirdName fields to mean ‘We know about this value and it
doesn’t exist.’

118

8 Exploring tables in more depth

The permutations of settings for Allow Zero Length and Required let you
distinguish between null and zero length entries to prevent problems when
fields are matched. A field that looks blank could also contain one or more space
characters and these too, can be controlled, either allowing such entries in the
field or not. The table below gives the permutations.

In order to let you play with these we have set up a table called Nulls
which has four fields – one with each of these permutations – in the
chap8nulls.mdb file.

119

8 Exploring tables in more depth

Required Allow Zero
Length

Action at data entry Value stored

No No Enter pressed Null

Spacebar pressed Null

Zero length string entered Not allowed

No Yes Enter pressed Null

Spacebar pressed Null

Zero length string entered Zero length string

Yes No Enter pressed Not allowed

Spacebar pressed Not allowed

Zero length string entered Not allowed

Yes Yes Enter pressed Not allowed

Spacebar pressed Zero length string

Zero length string entered Zero length string

Chapter 9

Tapping the power of Access
queries

Queries are much more powerful than they first
appear

Queries can show you exactly the aspect of your data that interests you, with-
out a clutter of data that’s irrelevant to the task in hand. Queries are also great
for times when you’re sure that certain information can be teased out of the
database; it’s so quick to build and modify queries that you can do it iteratively,
narrowing your criteria until you reach the goal. It’s also often possible to start
from a wizard-generated query and speed up the process further.

So far we’ve talked about basing forms and reports on an underlying table of
data, but one of Access’ most powerful assets is its ability to base forms and re-
ports on the answer table generated by a query. There’s more on this topic later
in the chapter.

Records extracted with a query can be sorted into a specified order, and as peo-
ple prefer to deal with sorted information, this makes the assimilation of results
easier. Listing customers alphabetically by last name, for example, lets you
check individual records quickly. Queries can also perform mathematical cal-
culations and return the results. The values in a field can be summed, the num-
ber of values counted, averages calculated and so on. Bearing in mind that, as
we’ve just said, forms can be based on queries, a world of possibilities opens up.
You might, for instance, build a query that extracted all of the orders from
Boston that your company has processed, calculated the total value of each or-
der and then sorted them by that value. You could then base a form on that
query called, say, BigBostonOrders. The people who use your database
don’t have to know how you have done this, all they need to know is that when
they open the form they see the relevant data, neatly summed and sorted.

120

Sometimes a query will uncover some hitherto unknown aspect of your data;
maybe you sell more red cars in the south of your territory and mainly blue
ones in the north. Not only do queries let you extract more information from
your raw data, they let you make more of the information you extract.

Once a database has been established and is in use, it will need to be maintained
and this is another area where queries are invaluable. The so-called ‘action’
queries (see below) are used to automate housekeeping tasks which would be
seriously tedious to perform manually.

So, if it sounds as if we are fans of queries, indeed, we are. A database doesn’t
begin to repay the effort required to create and maintain it until you start to
extract information from it and queries are the main tools for that extraction.

The main types of query

So far, when looking at queries we’ve concentrated on Select queries which can
extract subsets of the fields and the records. However, Select queries are not the
only type we can run. In fact, there are six categories of query, ranging from the
straightforward to the advanced. All are designed to let you find exactly what
you want in your database and some have their own wizards. Very briefly (just
to give you an overview) they are:

Now we’ll look at the first five in more detail. To cover the sixth, SQL querying,
would mean introducing a whole language devoted to querying databases and
to do this is beyond the scope of the book. The other types of query will provide
more than enough functionality for learning what you can do with your
databases.

121

9 Tapping the power of Access queries

Type of query Usage

Select Selects fields/records from a table according to the criteria specified

Parameter Displays dialog boxes which prompt the user to supply a criterion on
which to query (parameter value criterion)

Range Selects fields/records which contain a range of values

Group By and
Crosstab

Displays summarized values (sums, counts, averages) in a grid form,
looking much like a spreadsheet, taking its rows and columns from
chosen fields.

Action Performs actions to change the records in a table (Delete, Update and
Append queries) and to create new tables (the Make-Table query)

SQL Queries can be written in SQL (Structured Query Language): complex
SQL queries cannot be created in Design view.

Creating a Select query

You’ve already created select queries – these are what we built in Chapter 4
with the wizard and from the Design view.

Select queries are the simplest and most common type of query; they’re also
highly useful, letting you concentrate on a reduced set of the information in a
database.

To re-cap briefly, the main steps are:

• Choose the table you wish to query.
• Choose the fields you want to use in the query.
• Add criteria to choose the records you wish to find.
• Run the query.

Creating a Parameter query

A parameter query is amazingly useful, particularly when you know that you
are going to have to query the same table many times but that you are going to
be looking for slightly different sets of information each time. Suppose you
have a table of customer records. You find that you frequently want to run a
query that shows all of the records of the customers from a given city but that
the city changes each time you run the query. One time you need to see all of
the customers from Paris, then you need to see everyone in London, next time
for Boston and so on. Using a parameter query gives you a quick way of check-
ing out records of different cities without having to edit the query in the Design
window every time. When a parameter query runs a dialog box appears, you
type in the appropriate city and the query is automatically set to search for re-
cords that match. This is invaluable when you are building a database for other
people to use, particularly if they may not know how to build queries.

Parameter queries can prompt for more than one piece of information; if you
commonly retrieve sales made within a period of time, you can design prompts
to ask for the start and finish dates. With these entered, all records that lie be-
tween the two dates are retrieved by the query.

� Incidentally, we said in Chapter 2 that reports and forms can be based on queries and that
includes parameter queries. Reports that are required regularly (perhaps a monthly sales
report) are well suited to being based on parameter queries. When such a report is run, it
asks, by means of a dialog box, for the period the report is to cover. Enter the month and
the report will automatically take the values from records from that period.

122

9 Tapping the power of Access queries

�

Returning to the Club database, we’ll build a parameter query to select records
for a city that you will specify in a dialog box once the query is running. Open
the chap9start.mdb file and build a select query with the wizard.

Include the FirstName, LastName and City fields from the ClubMembers
table in the query and call it CityPeople. When the wizard displays the an-
swer table, swop to Design view. Prepare to add a criterion to the City field but
instead of the usual ‘London’, you type the text that you want the parameter
query dialog to display. This text must be wrapped in square brackets. ‘[Type in
the city:]’ is the text used here.

Run the query to see the completed dialog box.

Type in a city (‘london’, for instance) and click OK.

The answer table has located all records from your chosen city unless, of course,
there are none.

123

9 Tapping the power of Access queries

� In Chapter 4 we said that you can use wildcards to look for records when you aren’t ex-
actly sure what you’re searching for. In a normal select query, if you type in car* as the
criterion, Access converts this to:

Like "car*"

If you want to use a wildcard in a parameter query, simply create a parameter query that
uses the LIKE operator and the wildcard symbol (*). For example:

Like [Enter the first letter to search by:] & "*"

will look for words that begin with a specified letter, while:

Like "*" & [Enter any letter to search by:] & "*"

will look for words that contain the specified letter. You can also type in the first two or
three letters: ‘se’ finds Seattle whereas ‘s’ finds Seattle and San Francisco.

Creating a Range query

A range query locates records that fall within a specified range. A range can be
date or time-based (between April 16 and August 19, or between 09:00 and
18:00) or value-based (between 30 and 100).

Again, you can start with a wizard-built select query and then modify it from
the Design view to add a range criterion.

Range criteria use the Between...And operator. The syntax is just like English:
we’d say “Show me the records from between April 16 and August 19” and
that’s just how this operator works.

Examples of valid range criteria include:

Between 100 And 150
Between #01/01/60# And #31/12/62#
Between #08:30:00# And #12:20:00#

Records that meet the values that specify the starts and ends of ranges are in-
cluded in the answer set. You can also use mathematical operators to the same
effect, for instance, >=100 and <=150.

You can type in dates and times without the surrounding hashes and Access
will add them automatically.

124

9 Tapping the power of Access queries

�

A typical range query might look like this

for finding records with address ID numbers between 4 and 8 inclusive.

Finally, we can combine Parameter and Range queries by using criteria like:

Between [Type the start ID:] And [Type the end ID:]

Typing 3 and 10 into the parameter query dialogs will find addresses with IDs 3
through 10 inclusive.

Creating Action queries

Action queries, as their name suggests, do things. They effect actual changes to
the records in a table, either by deleting them, updating or adding new records
(appending, in database-speak). A single query of any of these types can affect
multiple records. Action queries are very powerful and are mainly used for
database maintenance tasks.

• A delete query will delete from a table all records that match certain criteria.
Delete queries always delete entire records, not just certain fields within
records.

• An update query will locate records that match a criterion and then alter each
record to contain the updated information.

• An append query is used to incorporate records from one table into another.
Records from tables that contain different fields can be brought together with
an append query.

• The fourth type of action query is the Make-Table query; we looked at this in
Chapter 4. When the answer table produced by a query would be useful as a
table in its own right, the Make-Table query does just that.

125

9 Tapping the power of Access queries

� Action queries can accurately be called ‘powerful’ but remember that ‘powerful’ is also a
euphemism for ‘extremely, mind-bogglingly, dangerous’. A single delete query could, for
example, remove all 200,000 customers from your table. Or one quick update query could
turn the date of every order in the database to 1/1/2000: neither of these changes is likely
to be helpful. We have no intention of trying to inhibit you from using these queries be-
cause when used carefully, they are almost magically effective. So please ‘do do this at
home’ but equally importantly, please do any testing and development work using a copy
of the database rather than the real thing. Then if something does go wrong, you can re-
cover painlessly. That is exactly what I do because no query designer gets everything
right first time every time.

Creating a Delete query

You’d create a delete query if, for instance, the French club members started a
break-away movement and formed their own independent club. A delete
query could remove from the table all records for members based in France.
Whether there was but one member in the table or 999 of them, the delete query
would rout them all out and delete them.

This example will delete all the Seattle-based members from the Club database
(nothing personal, Seattleites; it’s just an example). Go to the Query tab in the
database window and start the process of building a new query from Design
view, based on the ClubMembers table. Click the arrow next to the Query
Type icon and select Delete Query from the list (you may need to click the
down arrow button at the bottom of the list to reveal the Delete Query option).

The title bar for the Design window now indicates that you’re working on a de-
lete query and the Query Design grid has acquired a row labeled Delete.

126

9 Tapping the power of Access queries

�

Double click the asterisk from the ClubMembers field list: this step isn’t com-
pulsory but it will give you, in a few moments, a more comprehensive view of
the records you’re planning to delete. The Delete line now says ‘From’.

You have chosen the table from which you want records deleted, so now you
set the criterion for the records to be deleted. Drag the City field from the list
into the field row of the second column in the grid. The word ‘Where’ appears
in the Delete row and in the Criteria row below that, specify the records to be
deleted. We’re going to remove the details of people in Seattle, so type:

seattle

� We said in Chapter 4 that when you’re building queries, there is a difference between the
Run button and the Datasheet view button. Here we’ll see this difference in action.

127

9 Tapping the power of Access queries

�

Don’t, at this point, click the Run button. Flip to the Datasheet view instead
(using the first button in from the left on the toolbar) as this will show you the
records that this query will delete if it is run. Showing all fields makes it easier to
see what the query proposes to do to your data.

Click to return to Design view. This is the point at which, if you didn’t see the
records you expected, you’d edit the query accordingly, returning to the pre-
view to check all is well.

When the records you want to delete are shown in the Datasheet view, return
to the Design view one last time and actually run the query with a click on the
Run button. A message window tells you that any rows deleted cannot be re-
stored with the Undo button. Click Yes to continue. Look at the ClubMembers
table: all the Seattle residents’ records have, indeed, disappeared.

If you save this query as, say, DeleteSeattleRecords, add a Seattleite
record to the table and then double click the query name, the query will warn
you that it is about to delete records before running.

In the database window, delete queries are identified by this icon with a red
cross to warn that data may be lost if you run the query:

You can set criteria in more than one field, perhaps to identify those with email
addresses who live in London (We’re not sure why you’d want to persecute
these individuals either, but the option’s there).

Thechap9deletequery.mdb contains theDeleteSeattleRecords query
but it hasn’t been run: you can do this and check the result. To return to a full set
of member records, load up the chap9start2.mdb.

Creating an Update query

You would use an update query if you wanted to increase the sale price of your
goods by 5%. The increase could either be applied to all items sold or just to
those with a stock code beginning YSK. Similarly, if a supplier introduced a

128

9 Tapping the power of Access queries

new coding structure which replaced YSK codes with JFX codes, you could
bring your records into line with an update query.

So, as a demonstration, we’ll assume that you’ve just discovered, much to your
embarrassment, that you’ve spelled Kirkcaldy incorrectly in the addresses of all
your friends living there. I’ve added two of these to the table, like this:

For one or two records, you could easily make the change manually, but with
dozens or hundreds of records to update, you’d use an update query.

Start building a new query from the Design view, adding the ClubMembers table
to the Table/Query pane. Click the Query Type icon and select Update Query from
the list. The title bar for the Query Design window shows you’re designing an
update query and the design grid now contains an ‘Update to’ row. Add the City
field to the Field row and in the Criteria row type in the misspelling you want to
locate, namely the records saying Kirkaldy in the City column.

In the Update To row in the same column, type in:

Kirkcaldy

This will update the existing spelling with this new correct spelling, as you’ll see
when you run the query. (You can check the records that will be updated by

129

9 Tapping the power of Access queries

looking at the Datasheet view as before.) Exactly what you type in the Update To
row will be written into the fields, so use capitals as required. A message window
checks that it’s OK to go ahead; click Yes if it is and the update query will run.

There, your street-cred is restored.

� (Kirkcaldy is a charming town is Scotland, just north of Edinburgh, and is pronounced
Kir-cod-ee rather than Kirk-aldy. I agree that you don’t need to know this in order to run
the query, but I thought the information might break up the heavy database stuff a bit.
Kirkcaldy has a great Italian restaurant called La Gondola.)

Update queries can involve more than one field. For instance, you can locate
the records for goods from Supplier X and increase the sum in the correspond-
ing Price fields by 5%.

When you save a query, it appears in the list of queries (accessed by the Query
tab) alongside an icon identifying the query type. If you can’t identify a query
type from the icon, highlight it and click the Properties button.

The chap9updatequery.mdb contains the KirkcaldySpelling query but
it hasn’t yet been run.

130

9 Tapping the power of Access queries

�

Creating an Append query

Append queries will add records from one table to another. For example, you
decide to stock a new range of products and the manufacturer supplies an Ac-
cess table detailing them. With an append query, you could add these records
into your own ItemsStocked table automatically. This one’s a real
time-saver: imagine how much longer it would take to type in these new re-
cords and how many more errors would be likely to result if you did it
manually.

This simple example of an append query will add records for three new mem-
bers to the ClubMembers table in the Club database. The new records are held
in a table calledNewMembers: this table is included in thechap9start3.mdb.

Start with a new query in the Design view, adding the NewMembers table (the
source of the new records) to the Table/Query pane. Click the Query Type icon
and select Append Query from the list. A dialog asks for the name of the table to
which you wish to append records (i.e. the destination of the new records); se-
lect ClubMembers from the pop down list and check the option button to indi-
cate that it’s in the current database. (You can also append to tables held
elsewhere; just type in the file name and the path as necessary).

Click OK. At this point you determine which fields in the NewMembers table
should be appended to the ClubMembers table. You should be aware that:

• if the source and destination tables both have AutoNumber fields you
shouldn’t add this field to the query. Access will automatically insert
AutoNumber values into the destination table, giving records values leading
on from the largest entry therein.

131

9 Tapping the power of Access queries

• if the field names in the source differ from those in the destination table, en-
ter the field name used in the destination table into the query grid on the Ap-
pend To row. In this case the asterisk cannot be used; each field must be
entered individually into the grid.

I’ve selected everything but the AutoNumber AddressID field. Click into
Datasheet view button to see the records that will be appended; return to De-
sign view and run the append query. A message says this action will not be
undo-able; click Yes to go ahead. Check out the ClubMembers table which
now contains the new records.

The query is saved as AddNewMembers and is present in the
chap9appendquery.mdb file but it hasn’t yet been run.

Creating a Group By query

In the table at the start of this chapter we listed Group By and Crosstab together
because they do much the same sort of job. However, here we’ll deal with them
one at a time because they do differ in detail (and power).

Take a look at the TreeOrders table, shown below, from the Tree database in
the chap9start4.mdb file.

132

9 Tapping the power of Access queries

Create a new select query based on the TreeOrders table and showing three
fields, FirstName, LastName and Quantity.

When you run it, you’ll see, as expected, 25 records of which the first few are
shown here:

Now, suppose that you want to see the total quantity for each person. In other
words, you want to see each name only once in the answer table with the total
beside it. Flip back to Design mode, locate the ‘Totals’ button in the toolbar

133

9 Tapping the power of Access queries

FirstName LastName Quantity

George Thomas 1

George Thomas 2

Anna Morgan 2

George Thomas 1

Jo Green 1

Jo Green 1

John Parker 1

and press it. An extra row, labeled Total, appears in the lower part of the design
window.

By default each field in this Total row reads ‘Group By’ but we want to change
this, so click in this row under the Quantity field, then click the down arrow
that appears.

From the list select Sum and run the query.

Magic. Save it: ours is called GroupByQuantity. So how is it working?

The Group By instruction under a field says “find all of the records that have
the same value in this field and put them together in the answer table.” The
Sum instruction says “add up the values found in this field for all of the records
that have been put together by the Group By instruction.”

134

9 Tapping the power of Access queries

Ah, but you noticed that there were options other than Sum in there. Try select-
ing, say, Avg and re-running the query. You’re way ahead of me; you guessed it
would give the average. Have a play with the others while you’re here.

Now try to answer this one before you try it. If you edit the original table so that
Jo Green becomes John Green, what happens if we sum the quantities? After
all, we already have a John Parker, so will the query show us the orders for
these two individuals together?

The answer is...

No, because we are grouping by two name fields, and both have to be the same
before the records are put together. However, what would happen if we re-
moved the LastName field from the query? Would the query then put all the
‘John’ records together? This is a more interesting question. After all, we know
the records refer to different people, and, in a sense, Access ‘knows’ this as well
because it has the data in the base table.

135

9 Tapping the power of Access queries

FirstName LastName SumOfQuantity

Alison Kipps 2

Anna Morgan 4

Emma Ferguson 4

George Thomas 4

Heather Bell 2

John Green 2

John Parker 6

Peter Johns 2

Simon Jones 2

Sonia Hardwick 3

The answer is...

that the John records are put together, which is an important point. A Group By
query will group records on the basis of the fields that you choose for the query,
not on the basis of the original records. In fact, once you think about it, this has
to be the case. Each record in the original table has a different primary key value
so if the value in every field in the base table was considered, no records could
ever be grouped together.

Grouping is easy to demonstrate, but don’t let that fool you: it’s a very powerful
tool. When you start to query databases in anger, it will be one of your best
friends.

136

9 Tapping the power of Access queries

FirstName SumOfQuantity

Alison 2

Anna 4

Emma 4

George 4

Heather 2

John 8

Peter 2

Simon 2

Sonia 3

Creating a Crosstab query

A crosstab query is essentially a Group By query but with even more power. It is
often the answer when you’re juggling different ways of looking at a block of
data, it adds an extra dimension to a Group By query and gives an answer table
that is reminiscent of spreadsheet output. It lets you present data in two catego-
ries rather than one but with the same sum, average or whatever calculated for
each intersection. This description, while accurate, probably doesn’t mean too
much and the easiest way to see what a crosstab does is to show you one.

So that’s an example of what a crosstab query can be induced to do; all you need
to know is how to make it work. Just before we start, note that there are essen-
tially three ‘elements’ in this crosstab. Down the left hand side are the last
names of the people (taken from the LastName field in the original table) and
these are acting as headings for the rows that we can see in the crosstab. Along
the top are the names of the trees (from the Description field) which are act-
ing as the headings of the columns. Finally, at the intersection of the rows and
columns, there are the numbers of trees bought (Quantity field). In this
crosstab, these numbers have been added (or summed) where appropriate. For
example, John Parker has bought one oak and then another two and the
crosstab shows the correct total of three at the intersection of Parker and Oak. In
addition, he has bought two Ash trees and a Silver Birch, so his total for all trees
is six.

Cross tabs can be created with a wizard, so the wizard is going to want to know:

1. which table you want to query;
2. which field to use for the row headings;
3. which field for the column headings;
4. which field for the intersections;
5. what mathematical operation (in this case, summing) to apply to the num-

bers at the intersections.

137

9 Tapping the power of Access queries

Right, armed with that foreknowledge, we’ll build this query, starting with the
Crosstab wizard.

In the Queries tab, click the New button from the top of the database window,
select Crosstab Query Wizard and click OK. Select the TreeOrders table and
click Next.

In this dialog you choose the row headings. Select the LastName field and it’s
illustrated in the sample display so you can check the orientation, as shown
below.

138

9 Tapping the power of Access queries

Click Next. Now select the field for the column headings – Description.
Again your choice is illustrated by the sample. Click Next. This is where you de-
termine the number you want to be calculated at the intersections, so select the
Quantity field. Then select the Sum function. There is a check box for whether
to include row sums: check it to include a total number of items purchased in
the crosstab.

Click Next one more time, give your query a name (ours is WhoBoughtWhat),
check that the option button for ‘View the query’ is selected and click Finish.

Easy!

139

9 Tapping the power of Access queries

It’s worth having a look at the Design view of this crosstab query,

to get a feel for how it has been constructed. Once you get used to creating
crosstabs, you can, of course, start tweaking in Design view to customize the
query further. But for now, have a play and create some more crosstabs from
this data.

The Crosstab wizard offers a range of functions apart from SUM, used above,
and these are shown below.

140

9 Tapping the power of Access queries

Function Description

AVG Average of the values in a field

COUNT Number of values in a field, not counting blank values

FIRST Field value from the first record in the result set in a query

LAST Field value from the last record in the result set in a query

MAX Highest value in a field

MIN Lowest value in a field

STDEV Standard deviation of the values in a field

SUM Totals the values in a field

VAR Variance of the values in a field

We have taken some care to stress that a crosstab has three main elements be-
cause, unless you bear that in mind, sometimes you may get an answer that
seems counter-intuitive. For example, John Parker has bought three oaks, all at
$25 each. Suppose that when he bought two together we were generous and
dropped the price to $20.

The average price he has paid for oaks is now (20+20+25)/3 which is 65/3 which
is $21.67. If you make the required change to the TreeOrders table and then
create a crosstab query to show the average price, will it show $21.67 for
Parker’s oaks? At first thought this seems the obvious answer, but not if you
think about the elements we give the cross tab in order to do the calculation. We
tell it to look at the LastName, Description and Price fields. We haven’t
told it to look at the Quantity field at all, so it doesn’t ‘know’ that John Parker
bought two oaks at $20, it simply knows that there are two records for Parker
buying oaks in the TreeOrders table – one gives the price as $25 and the other
$20. The crosstab uses this data to calculate the averages, so in the answer it cites
the average for oaks as $22.50.

It is giving the right answer, based on the information we asked it to use. We
aren’t trying to make this out to be a big problem, it is just something that needs
to be borne in mind. (This query is called AveragePriceCrosstab).

141

9 Tapping the power of Access queries

Another point worth knowing is that you can create crosstab queries that use
parameters. Here is one, called TreeChoiceCrosstab, all set to go.

The only problem is that it won’t run and instead generates an error message.

142

9 Tapping the power of Access queries

This is because, when you create a crosstab query that uses parameters, you
have to tell Access the ‘type’ of data that is going to be used in the parameter.
This is easy, all you have to do in Design view is to pop down the Query menu
and select Parameters...

Then type in the same information as you typed into the Criteria line of the
query and set the data type to text as shown here:

143

9 Tapping the power of Access queries

After that, the query should run like a normal parameter query.

Using a query to perform calculations

Databases exist to enable the extraction of information from the data stored:
that’s the primary reason for building a database. Information like totals, aver-
ages and so on are really useful pieces of information but you don’t usually
store them in the database. The reason is simple. Take our table of tree sales.
John Parker buys two oaks at $25 each, so I enter that information and the total,
$50. When he comes to collect them I realize he is an old friend and change the
price to $20 each. I amend the price per oak, but forget to amend the total. Six
months later, I look at the record and see the anomaly but haven’t a hope of re-
membering which value is incorrect – the price per oak, the number bought or
the total. So, as a general rule we don’t store totals, averages or any other data in
a database that can be calculated (or derived) from the data that is already there.
Instead we calculate it afresh whenever we need it and, as you’ve probably
guessed, this can be done with queries.

We’ll build the query which generates an answer table that totals the cost for
each order.

The first step is to build a select query based on the TreeOrders table and us-
ing the four fields LastName, Description, Quantity and Price: use
whichever method you prefer to get to this point. You want to add a new field
for the total price that’s to be calculated from the Price and Quantity fields. In
Design view, in the Field row of a blank column type

TotalPrice: [Price]*[Quantity]

144

9 Tapping the power of Access queries

This says, in effect, ‘create a field called TotalPrice and place in it values cal-
culated by multiplying the value in the Price field by the value in the Quan-
tity field’.

Click to Datasheet view to see the result.

145

9 Tapping the power of Access queries

I’ve saved this query as PriceCalc. Now if you edit the order for Parker to
change the price per oak back to $25, you’ll find that as soon as you move off the
cell you’ve edited, the total price automatically updates to the correct value
before your very eyes.

You can now build a Crosstab query based on this query which will show, in-
stead of the numbers of trees that have been purchased, the amount spent by
each customer on each type of tree. Here it is in Design view

146

9 Tapping the power of Access queries

and in Datasheet view: it’s called PriceCalcCrosstab.

The Tree database with all these crosstab queries is in the
chap9crosstab.mdb file.

Can you edit the data in an answer table?

You’ll be familiar by now with the idea that data is stored in a table and also that
queries produce tables. Tables for storing the raw data in a database are known
as base tables while the ones generated by queries are called answer tables.

Answer tables and base tables share many attributes (see the section on closure
later in this chapter); one of the few ways in which they can differ is whether
you can edit the data they contain. Clearly you can edit the data in a base table
but what about the data in an answer table? The answer is normally ‘Yes’ but
you need to be aware that sometimes the answer is ‘No’.

Imagine a select query that pulls out all the records for people living in Wash-
ington state and presents them in an answer table. You want to edit the address
of a friend who has moved house; can you do that in the answer table? Yes, you
can and the changes that you make in the answer table will appear in the base
table upon which it is based.

Now consider thePriceCalc query described above that has a calculated field
called TotalPrice. The values in this field are generated from the values in
Price and Quantity fields. Can you edit the total price values in this answer
table? No, you can’t (give it a try). The query has calculated the total price
values from the values in two fields in the base table. If you alter the total price
value for a record in the answer table, that alteration ought to be reflected in the
base table. In which field should Access place your alteration in the base table,

147

9 Tapping the power of Access queries

the unit price or the quantity purchased? Access can’t tell which alternative is
the sensible one so in this case it will refuse to let you edit the answer table.

As a rule of thumb for establishing whether a field is editable or non-editable,
consider what it is showing you. If it’s simply a view of what’s contained in the
base table, you’ll be able to make changes that will be incorporated into the un-
derlying table. If some manipulation has been carried out on the fields you see
in the answer table (the calculation of a sum, average or total, or the concatena-
tion of text fields, for example) then you will not able to edit those fields. Please
note, however, that this is only a rule of thumb. Sometimes answer tables are
rendered un-editable for more complex reasons that fall outside the remit of
this book. This shouldn’t worry you too much because you can always simply
try it. Build the query and try to edit the answer table. If Access allows you to
perform the edit, then it considers the edit to be safe and you can go ahead.

Refining queries to home in more precisely upon
records

Queries can be fine-tuned to help you find exactly the records for which you’re
searching; here are some of the more useful ways of performing this trick. We’ll
use the ClubMembers database again so if you wish to follow our steps, load
up the chap9start5.mdb file.

For example, operators can be used in queries to help you home in on the
records you want. Because these queries are often created in response to a
sudden one-off question, they are rarely saved. (Such queries can be described
as ‘built on the fly’).

OR and AND

Two of the most commonly used operators are OR and AND: we met these in
Chapter 4. Remember that using OR tends to increase the number of records in
the answer table and that AND tends to decrease them.

148

9 Tapping the power of Access queries

LIKE

This works in a similar was to its English language equivalent: it’s like saying
“Find me the address for that guy Jackson... or Johnson... whatever”. Such a
query would look something like this:

(You can simply type ‘jack* or john*’ and Access adds the inverted commas
and both Likes).

The asterisks in this query are wildcards (see below); used in conjunction with
these, LIKE is a very useful and powerful operator.

NOT

Another useful one, NOT. (No, it is, really it is). It can be thought of as the oppo-
site of LIKE and lets you chop away the records you don’t want on the occa-
sions where that’s easier than specifying the ones you do.

149

9 Tapping the power of Access queries

For instance, if you know that there are several people with the last name
‘Dupont’ in the database, and you know that you don’t want the one who lives
in Paris, you could use the following query:

to further narrow the search.

NOT is also very useful when combined with Null, that absence of data
discussed in the previous chapter. If you wanted to find all the members with
email addresses, you’d write a query like this, using Is Not Null as the criterion
for the Email field.

150

9 Tapping the power of Access queries

This says ‘Show me this field in the answer table so long as it has content, that is,
if it’s not null’ and the result, saved as EmailList, is:

BETWEEN...AND

We introduced this operator when we built a range query earlier in this chap-
ter; it too works as it does in English syntax. Below is a typical example for find-
ing a record in a specific range of dates:

Between #01/01/58# And #31/12/60#

151

9 Tapping the power of Access queries

Wildcards

A wildcard is a character that is used in place of an unknown character or char-
acters. There are six, listed in the table below, of which * is by far the most com-
monly used.

The criteria

Like ‘Jack*’ Or Like ‘John*’

used above say ‘show me all the records where the value in the LastName field
starts with the letters Jack or John with any and all combinations of letters after
those’. Jackson and Johnsson are found, as would Jack, john, Jack789 and
Johnstonely-Burlinghame if they had been in the table.

Display only the highest or lowest values in the query’s
results

It’s also possible to restrict the scope of Select queries and of some Action que-
ries with a query limiter called TopValues. As the name suggests this lets you
find, for example, the top five selling products. Of course, ‘Top’ can refer to the
lowest values in a list, so you can also find the eight worst performing sales peo-
ple in your sales force...

152

9 Tapping the power of Access queries

Character Action Example

* Matches any number of characters;
can be first or last character in the
search string

pe* finds penguin & pencil;
*pe finds hope & calliope

? Matches any single alphabetic
character

?oad finds road, toad & load

[] Matches any one of the characters
within brackets

[rt]oad finds road & toad
but not load

! Matches any character not in the
brackets

[!rt]oad finds load & goad
but not road & toad

- Matches any one of a range of
characters; the range must be
specified in ascending order (A to Z)

x[f-h]y finds xfy, xgy & xhy

Matches any single numeric character 4#5 finds 435, 405 & 465

The TopValues box

is accessible from the main menu when you have a query open in Design view.
Entries can either be numbers (10, for instance, will give you the top ten re-
cords) or percentages (10% gives the top ten percent of records in the answer
table).

For example, if you want to find the two tallest urns in your collection, the fol-
lowing will do it.

The field we want to use for the selection (Height) has been sorted into De-
scending order; in addition we have set the TopValues box to two. The answer
table shows the result we want:

153

9 Tapping the power of Access queries

If we wanted the three smallest, we’d simply alter the query to this:

and the answer would be:

To make this a percentage rather than a number, simply follow the number in
the TopValue box with a percent sign (%).

Closure – and making further use of queries

� Closure is a term used in databases to describe the fact that answer tables not only look
like but also behave like the underlying base tables. This is more important than it first
appears...

Queries show you the data you want to see in an answer table. As you will have
noticed by now, the answer tables that Access displays look very much like the

154

9 Tapping the power of Access queries

�

base tables that hold the underlying data; both have rows and columns, both
are editable (though see the exceptions discussed above in the section called
‘Can you edit the data in an answer table?’). The fact that answer tables are con-
structed to look just like base tables is not accidental; it gives us much more flex-
ibility in the ways in which we can manipulate the data in the database.

You know by now that you can build one or more forms on a base table in the
same way that you can build one or more queries on a base table. Closure
means that you can do exactly the same with answer tables that come from que-
ries. That is to say, you can build forms that take their data from an answer table
and you can build queries that take their data from an answer table.

Suppose that you have a massive customer table which holds all your custom-
ers from around the world. You create a query called USACustomers which
extracts only the customers who live in the US. You can then build a form on
that query called, perhaps, American. When you open up that form, the query
will run automatically for you and in the form you will see only the US-based
customers.

� We should, in fact, say ‘build a form on the answer table generated by that query’ but
common usage and a dislike of verbosity lead us to prefer the looser phrasing.

And/or you can build a query based upon USACustomers that shows the peo-
ple who live in Seattle. You can go on and on. You could, for example, then
build a form called, say, SeattleCustomers on that query. When you open
that form, the first query runs, extracts the US customers and passes the answer
table to the second query. That query extracts the Seattle customers and these
are the ones you see in the form.

� Warning: gratuitous plug approaching.

This is all you need to know about closure in order to make use of it. If you end up inter-
ested in the background to closure and other aspects of the relational database model that
Access uses, try Inside Relational Databases, mentioned in the introduction. It will also
provide a beginners’ guide to using SQL.

We’ll have a look at a couple of examples of where closure can be useful.

155

9 Tapping the power of Access queries

�

�

Using a query as the basis for a form

You spend a lot of time on the phone to club members and you’re always look-
ing up numbers. You create queries to divide members into those in the USA
and those in Europe, showing the records in alphabetical order, but it’s still a ta-
ble to be looked through to find the right number. Base a form on this query
and you can have a neat clean view of one record at a time and cycling through
to the record you want is quick and easy. An example of such a form is shown
below.

Start by building a select query to find all those resident in the USA: a field called
Country has sidled into the ClubMembers table to make this possible. The
query is calledUSAPeople. From the Forms tab, start the Form wizard. Select the
query from the Tables/Queries list, add all its fields except Country, pick a
layout (Columnar), a style (Stone) and a title (USAPeoplePhoneNumbers).

To sort the records alphabetically by last name, place the cursor on the last
name field, click the Sort Ascending button on the button bar and save the
form. Now it will always open with records sorted by last name.

There it is, a friendly front-end to your list of contacts. This doesn’t look quite
like the one above it; the layout and style are different and it lacks the custom-
ized image but it’s perfectly usable and was created in a flash. (Changing the
look of your forms is covered in Chapter 10).

As you work with your database, you’ll find many more places where a form
based on a query makes a whole lot of sense.

156

9 Tapping the power of Access queries

Using a query as the basis for a report

A report can be based on a query in the same way as a form can, and just as eas-
ily. You’re going abroad and suspect that while you’re away you’ll need to
make a few phone calls to keep things moving. It’s the work of a moment to
print out a list of contact details to slip into your suitcase.

Build a query to show all phone numbers. In the Reports tab, start the Report
wizard, select the underlying query (AllPhoneNumbers) and all its fields.
Don’t group the records, sort them by last name, use the Tabular layout,
Portrait orientation, pick a style (Casual) and a name for the report
(AllPhoneNumbers). Click Finish

and there it is. Send it to the printer and you’re heading for the airport in sec-
onds flat.

The forms and report described above are in the file chap9end.mdb.

Using a query as the basis for another query

This sounds like weird recursive stuff. It is a bit, but it’s also very useful. Imag-
ine you have a query that identifies all the members in Europe. It’s a useful
query and you use it frequently. In time, the number of contacts grows to a
point at which it is no longer efficient to flip through the records to find the in-
formation you want. The quickest way to find everyone you know in Paris who
uses email is to build another query.

157

9 Tapping the power of Access queries

Rather than start again from the whole tableful of contacts, you can base the
new query on the answer table generated by the original query that finds Euro-
pean members. With a simple membership database this time saving may not
be significant but with a vast table of thousands of orders, for instance, it could
be a different story.

A query based on a query can be built manually or with the wizard. When you
start the wizard, pop down the list of Tables/Queries and choose the query to
base the new query upon. The manual method is just as simple. Click the
Queries tab in the Show Table dialog and pick the one you want. The query can
then be constructed just as if you were basing it on a table.

When you’ve completed the new query you simply run it: you don’t have to
run the query on which it is based. Access takes care of that; all you see is an an-
swer table with the data requested.

Summary

Time and effort go into collecting data and filling a database with it. Queries are
how you make your database work for you; they’re the payoff once all the hard
work has been done. Having put the data in, queries are how you get informa-
tion out.

As we progress through the delights of querying, some of the examples may
sound a little trivial. Indeed they are, but they’re there to demonstrate the basic
task that each type of query performs. Once you understand the principle of
each, as your database grows you’ll meet more and more occasions when they
can be pressed into service.

Combined with forms and reports, queries become even more powerful and
flexible. Experimentation is the key: time spent playing with queries and their
adjuncts is rarely wasted.

158

9 Tapping the power of Access queries

Chapter 10

Forms again – design

In Chapter 5 we looked at generating basic forms and then at how forms can be
used to calculate values for you. In this chapter we’re going to concentrate on
using the form designer to customize forms further and then look at a few other
ways of building forms.

Designing your form

Forms are the face your Access database presents to the world. Even if you are
the sole user of the database they are useful. However, when you start to build
databases that other people use, people who may be less computer literate than
you, they become invaluable. An uncluttered form in cool colors that shows the
fields you need is more conducive to accurate data entry than one looking like a
dog’s dinner.

159

You’re given control over a form’s appearance in Design view, as we’ve already
seen in Chapter 5. Start from the chap10start.mdb and use the wizard to
create a form showing all fields in the ClubMembers table. Use the default
columnar layout and standard style, calling it PlainForm. Flip into the Design
view (or, on the last page of the wizard, select the ‘Modify the form’s design’
option).

� It’s an oddity that if you select ‘Modify the form’s design’ option, when the form opens in
Design view, it has the default name of Form1 in its title bar, rather than the name you
specified to the wizard. When you close the form, however, it’s saved by your chosen
name, so Access does know what’s going on really….

This is your design environment. The toolbox is shown in this screen shot; if it
isn’t visible on your screen, click on the toolbox icon in the Form Design toolbar.

The Field List is open too, showing the fields in the table on which the form is
based; if it isn’t open, click the Field List button.

160

10 Forms again – design

�

The form has two gray bands at the top labeled Form Header and Detail, and
one at the bottom called Form Footer. (If you can’t see the Form Footer band,
drag to make the window bigger until you can). The footer and header sections
are not in use at present. Below the Detail band is an area covered by a grid,
known as the Detail section.

Moving fields

Make some room on the form by placing the cursor on the bottom right corner
of the Detail section and when the cursor turns into a four-headed arrow, drag
the corner in a south-easterly direction.

Each field in the Detail section is represented by two parts. To the left is a Label
that identifies the contents of the field. The label is transparent and its text
appears on top of the form’s background (flip to Form view to check this). To
the right is a Text box where the data from the field is displayed. This defaults to
a sunken white box in Form view.

Click anywhere in a text box and handles will appear around the text box and
also on the associated label. Mostly you’ll want to move these two together, so
aim the cursor at an edge of the text box until it shows as an open hand. Now
click and drag to move text box and label together to a new position.

To move a text box independently, put the cursor on its top left corner where-
upon it shows as a pointing hand. Click and drag to move it without the label
coming too. This technique works for moving labels on their own too.

You can also select a batch of fields and labels in order to move (or otherwise
manipulate) them all at once. Click somewhere on the gridded area and drag a
rubber band outline to encompass or to pass through all the objects you want to
select. When you release the button, handles appear on all the objects and they
can be moved just as you move any single object.

Deleting fields

To delete a text box and label, click on the text box and press the Delete key. To
remove a label and leave the text box, click on the label and press Delete.

Inserting fields

If you don’t have the Field List on screen, click the Field List button in the main
button bar or click View, Field List. You can drag this list of fields to anywhere
on screen (as you can the Toolbox). To insert a field, click and drag a field name
from the list onto the form.

161

10 Forms again – design

Changing the tab order of fields

When in Form view, pressing the Tab key moves you from field to field in a
certain order. This sequence is known as a form’s ‘tab order’. In the PlainForm
form, this is the order in which the fields appear in the underlying table.
Usually the default tab order is fine but if you move fields around the form, that
default may no longer seem so logical.

To inspect the tab order, flip into Design view, click View from the main menu
and Tab Order... (If it isn’t shown as an option, expand the list).

As the dialog explains, you can select each field name and drag it up or down
the list to create the order you want. Click on the grey square to the left of each
field name to select and move it by dragging. The Auto Order button is useful
for reinstating the default tab order. Click OK when the order is to your liking.

� You can also right click anywhere on the form and select the Tab Order option from the
pop out menu.

Formatting your form with colors and fonts

Using color isn’t necessary or obligatory, but it often improves the look of a
form and gives you and any other users a more attractive workplace.

162

10 Forms again – design

�

To change the background color, right click on the Detail section of the form,
select the Fill/Back Color option and chose the color you want from the pop out
palette.

Sometimes it is easier to see the effect of these changes in Form view rather than
in Design view. You can also view the properties and even change some of
them from Form view. To demonstrate this, change to Form view.

Inspect the property sheet: if it was visible when you left Design view, it will
remain visible in Form view. If you need to open it, just click the Properties
button in the main toolbar.

We’ll carry on playing with color, so look for the Fill/Back Color button in the
main toolbar.

163

10 Forms again – design

If you can’t see the button, you may need to turn on the Formatting
(Form/Report) toolbar – do this by right clicking on the existing toolbar and
selecting it.

Still in Form view, clicking on the Detail section of the form will toggle the
properties shown between those for the entire form and those for the Detail
section of the form. When you’re looking at form properties, the Fill/Back Color
button is grayed out, so with the Detail properties visible, click the arrowhead
alongside the Fill/Back Color button and pick a color. As soon as you do, the
new background color appears on the form. The color you’ve chosen has now
been loaded into the paint tin shown on the main part of the Fill/Back Color
button (a little bar of the color appears under the tin) so, should you want this
color again, you can simply click the main button.

Sadly we can’t have color pictures in this book to illustrate the excesses that can
be wrought by changing this background color and the color properties of all
the other objects. (You can set the Back Color, Fore Color and Border Color for
each text box alone....)

164

10 Forms again – design

Fonts are changed equally easily. With a text box selected, inspect the Font
Name and Font Size properties on the Format tab. Both have pop down lists to
let you change fonts and sizes. As you can see, Access allows you to make these
formatting changes in a host of different ways – from both the Design and Form
views, and from the toolbars or from the property box itself.

However, some design work can only be done in the Design view so it is best to
work there for the rest of the chapter.

165

10 Forms again – design

Changing field lengths and widths

You may decide that you need labels and text boxes to be bigger. This is often
the case if you change fonts and/or font sizes, as described above. Changing the
font size of the FirstName text box to 18 and flipping to Form view, the entry
in the field is now so large that it’s illegible on the form.

First clear some space by rubber-banding around all fields and labels below the
FirstName text box and moving them downwards. Now, to make a text box
bigger, go to Design view, select it with a click and then place the cursor on one
of its sides. When the cursor shows a double headed arrow, you can drag to
enlarge the box. Placing the cursor on a top right, lower right or lower left
corner to show a slanting double headed arrow lets you drag to change the
width and height simultaneously. Labels can be resized in the same way.

Adding graphics to your form

You can add graphics to your forms for fun or to give them a professional
appearance. If you have a company logo stored electronically, you can put it on
forms for a co-ordinated look. There is a ton of clip art around these days to
cover the fun angle.

From the Toolbox, click on the Image tool.

166

10 Forms again – design

Click on your form and drag an outline to be filled by the graphic. When you
release the mouse button, a window opens to let you navigate to your chosen
image.

� If you just want something for experimentation, given a standard Office installation,
you could try navigating to Program Files\Microsoft Office\Clipart

and looking around. Clicking the Views button:

and selecting Thumbnails lets you see each clip. It might take a moment or two to gener-
ate the thumbnails as there may be many clips in a folder.

Once you’ve selected a suitable clip, click OK.

Sometimes, depending on the provenance of the graphics file, the box outlined
will only show a small section of an image that’s much too large to fit and some-
times it will look completely blank, both in Design and Form view.

Look at the properties for the Image and set the Size Mode (found under
Format) to Zoom.

167

10 Forms again – design

�

The image should now appear in the Image box and be scaled to fit inside its
outline.

If you resize the image box on the form, the image itself will continue to zoom to
fill the space you’ve given it. Borders can be put around an illustration: check
out the Border Style, Color and Width properties.

We’ve saved this enhanced version of the original PlainForm form under the
name NotSoPlainForm.

168

10 Forms again – design

Headers and footers

To include a header on your form, put the cursor on the top of the Detail band
so that it shows as a horizontal bar with a two-headed arrow through it. Now
click and drag downwards and a new gridded area appears under the Form
Header band. Here you can add a label with a title for the form, a graphic or
whatever you want at the top of the form.

In Form view, any objects in the header will remain on screen, even if your form
becomes so long that you have to scroll down to see it all.

The Form Footer works in just the same way (drag the lower edge of its band to
pull out a working area) and anything placed here will be visible as you inspect
records.

� Strangely, if you click on the Header, Footer or Detail bars themselves in order to inspect
their properties, the bar turns white and you can no longer read its name. The name is
shown at the top of the property sheet, however, but it’s an odd ‘feature’ that’s crept in.

169

10 Forms again – design

�

Other ways of creating forms

If you opt to create a new form, Access offers a range of choices.

We’ve already used the Form wizard (Chapter 5) and have just taken a look at
Design view. The next five options in the list are five types of AutoForm:

• AutoForm: Columnar
• AutoForm: Tabular
• AutoForm: Datasheet
• AutoForm: PivotTable
• AutoForm: PivotChart

The first three AutoForms are so easy to use that we suggest that you simply
run through each to see what it produces. The two remaining AutoForms both
offer great ways of looking at your data and we’ll cover them below in some
detail.

The last items in the list are two further form-building wizards – the PivotTable
Wizard and the Chart Wizard – and both are explored below too.

PivotTables

A Pivot table is a method of displaying data that may be familiar to users of
Excel because that’s where they appeared first. They are very clever, letting you
look at the data in a database from different angles, all controlled by
mousework, and all from within a single form. This description doesn’t make
them sound exactly stimulating, so a few illustrations might help win you over.

170

10 Forms again – design

In order to get the best from a Pivot table, you need to feed it with data that is
structured in a particular way. Nothing too weird and to give you the idea, here
is a sample of the data we are going to use to illustrate Pivot tables:

ID City Person Item Price Number

1 London Ross Biscuits $2.00 45

2 London Sophie Cigars $50.00 5

3 London Sophie Beef jerky $12.00 3

4 Seattle Ross Biscuits $5.00 12

5 Half Moon Bay Katie Toys $35.00 3

6 London Julia Concert tickets $150.00 4

7 Seattle Steve Herring $50.00 2

8 Paris Andrea Toys $23.00 4

We have columns that contain the data we want to analyze (Price and
Number) and columns that contain information about the way in which we
want to analyze the data (we want to analyze by City, Person and Item).

In a well-designed database, you probably wouldn’t find a table that looked
exactly like this but that’s no problem. You would simply build a query that
produced the data in this kind of format and base the Pivot table on that query.
Just to make life simple, we have provided a table that is exactly like this. It is a
table called Pivot which is itself in the chap10start.mdb file.

171

10 Forms again – design

Given the data from the table above, you might want to see which items were
bought in which city:

to see where different people made purchases:

172

10 Forms again – design

or what each person bought:

or even what each person bought where:

You can see all these aspects of the data from within a single PivotTable view
(which is what Access calls a form displaying data this way). That’s an awful lot
of functionality to cram into a single form but it’s gratifyingly easy to put
together the elements you want, whether you choose to use the AutoForm:
PivotTable or the PivotTable Wizard.

173

10 Forms again – design

AutoForm: PivotTable

From the Forms tab in the database window, click the New button, select
AutoForm:PivotTable and the table called Pivot. You’ll see a blank canvas with
gray instructions upon it and a PivotTable Field List, like this:

174

10 Forms again – design

Drag the field called Item from the field list and drop it into the narrow vertical
band on the left side, labeled ‘Drop Row Fields Here’. The band will be outlined
in blue when your cursor is placed correctly. Release the mouse button and the
items are shown on the form.

Now drag the City field to where it says ‘Drop Column Fields Here’ and drag
the Number field into the centre of the form. Finally, drag the Person field to
the top of the form, where it says ‘Drop Filter Fields Here’. Move the field list if
it overlaps the form, or close it, and your form should look like this:

175

10 Forms again – design

It’s been really easy to reach this point and you can already see, for instance,
that there were two purchases of four concert tickets in London and that caviar
was only purchased in Paris – but let’s add some totals before we go any further.

Right click in any of the header cells that say Number and select AutoCalc. A
range of possible calculations is presented: we want to see the totals of items
purchased, so choose Sum.

176

10 Forms again – design

The table now shows totals of items bought in each city, for all items bought in
each city, and the total of each type of item.

The PivotTable helpfully adds gray shading to the cells containing the base
data, and in the PivotTable Field List you’ll see an entry at the top, called
Totals. Below it is the Sum of Number calculation you’ve just specified.

You could click again on a Number heading and add another calculation, this
time for the Average sales figures. The Field List reflects the new calculation.

177

10 Forms again – design

Now the grid is even more complex but there are several ways of reducing the
clutter. You can click the tiny button showing a minus sign alongside each item
to hide the details, so you can see just the sum and the average. Or you can right
click in the Item column header and select Hide Detail, which changes the
layout to look like this:

Playing around with the Show and Hide Details options (using the little
buttons or from the right click menu) gives you a feel for how you can change
the appearance of the data. Now return to showing details.

A useful trick for adding clarity to the display is to add color. Right click on one
of the cells in the main body of the grid that contains an average or sum. Choose
Properties and in the Format tab, select a Background color.

178

10 Forms again – design

Another useful tip is to hover the cursor over a cell for a moment, until a label
pops out identifying the cell contents:

You can also close the Field List until you need it again: when you do, click the
Field List button in the menu bar:

As you’ll appreciate, there is a lot of flexibility at your disposal in a PivotTable,
and we’ve barely scratched the surface. We’ll look briefly at a couple more of its
features and then leave you to experiment in your own time.

We’ll start by reducing the complexity a little: open the Field List, right click on
the Average calculation and delete it.

Remember dropping the Person field at the top of the form into an area
labeled ‘Drop Filter Fields Here’? Beneath the Person label in the top left
corner it says All. This means that the PivotTable is displaying data for all
people so no filtering of data is taking place.

179

10 Forms again – design

Click on the down arrowhead alongside thePerson label and you’ll see a list of
all people. Here you can filter for those persons for whom you wish to see data
simply by deselecting or selecting their names. If we wanted to filter on just
Katie and Julia’s purchases, we’d deselect the other four, like this:

Click OK and the PivotTable will reduce in size dramatically:

Hovering the cursor over the words (Multiple Items) beneath the Person label
shows you the names of those whose data you are inspecting.

180

10 Forms again – design

You can also incorporate the Person data into the PivotTable as an additional
row or column. Click and drag the Person label from the top left corner onto
the main form, pulling it down to the left of the Item column (a blue bar will
show you where it will land). Release the mouse button and the display
changes to this:

181

10 Forms again – design

If you don’t want to see the data displayed like that, click and drag the Person
label to the other side of the Item column for a display like this:

Or make Person a column rather than a row, like this:

182

10 Forms again – design

You can also filter on data in columns and rows: click on the down arrowhead
next to City, for instance, and filter on Boston and London.

The sky’s the limit with PivotTables. This one’s saved as Purchase
PivotTable.

Note that if you make changes to the data in the underlying table, you have to
re-open the PivotTable form in order to see those changes. In the database
window, the icon for a PivotTable form is no different from that for other types
of form: this is a shame as it would be helpful to have these flexible and useful
forms differentiated in some way.

� PivotTables are so wonderful that we’ve gone on rather a lot about them. As we’ve said,
they really come into their own with a multi-table database.

Views

Towards the start of this PivotTable section we said that Microsoft used the
term ‘PivotTable view’. Open PurchasePivotTable, if you’ve closed it, and click
on the down arrowhead alongside the View button (the button used to toggle
to Design and other views) and select Form view.

183

10 Forms again – design

�

Amazingly, your snazzy reactive PivotTable can also look like an ordinary form
from which you can move through records one at a time. It’s not perfect (the
label for the Number field is too small) but nothing a little tweak in Design view
wouldn’t fix. Now choose the Datasheet view:

and there’s all the data on display. Select the PivotChart view and, lo and
behold,

there’s a chart representation of the latest PivotTable view.

This is an excellent indication of how Access handles the display of data. The
important element is the underlying data: forms, PivotTables and the rest are
simply different ways of showing it to you.

184

10 Forms again – design

The PivotTable wizard

Returning to the Forms tab of the database window, clicking New and selecting
PivotTable Wizard give you another route to building the type of form we’ve
just discovered by selecting AutoForm: PivotTable.

Try it using the same table of data (Pivot) and you’ll see a screenful of explana-
tion and, when you click Next, you can choose the fields for pivoting: this time
we’ll use City, Person, Item and, for a change, Price. Click the Finish
button and you see the familiar interface where you drag the fields into posi-
tions for rows, columns, data and filter fields, just as before.

You’re now ready to add totals, colors, introduce filters and flip fields into posi-
tion as described in the AutoForm: PivotTable section above.

AutoForm: PivotChart

Having been introduced to a PivotTable in all its glory, you’ll doubtless have a
good idea of what a PivotChart can do, so let’s take a look.

185

10 Forms again – design

From the Forms tab in the database window, click New, select AutoForm:
PivotChart and the table called Pivot. A blank chart outline appears with the
now-familiar labels for positioning fields and the Field List itself.

Drag the Item field to the bottom (‘Drop Category Fields Here’). Now drag
Number to the top of the chart (‘Drop Data Fields Here’): this automatically
creates a Sum of Number calculation and already we have a chart with items
along the X axis and totals shown on the Y axis.

186

10 Forms again – design

Drag the Person field to the ‘Drop Series Fields Here’ position and then click the
Person label that appears on the chart to filter on Andrea and Steve. Now click
the Show Legend button on the button bar:

and here’s a useful chart showing what Steve and Andrea bought and in what
quantities.

We can add a title and label the axes: for the title, place the cursor anywhere in
the white space surrounding the chart (hovering will produce the Chartspace
label), right click and choose Properties. On the General tab, click the Add Title
icon.

187

10 Forms again – design

A box saying ‘Chart Workspace Title’ appears on the form: click on it and go to
the Format tab in the Properties sheet. Edit the caption to whatever you want.

Edit the axis labels in the same way, by clicking on them and editing their
captions in the Format tab.

188

10 Forms again – design

There’s a handy button on the button bar looking like this:

It’s labeled By Row/By Column and clicking it swops the rows and columns
over so that you see this display:

This is very handy, but it is worth noting that the axis labels don’t swop around
at the same time. This may, or may not, matter too much. It depends upon how
vague your labels are...

189

10 Forms again – design

You’ll have guessed that you can drag another field to the ‘Drop Filter Fields
Here’ position and define filters as you can with PivotTables. However, if you
don’t want to do this, you can inspect the properties of the Chartspace and in
the Show/Hide tab, deselect the Field buttons/drop zones option. Now these
will vanish from your PivotChart view, making it look much more professional.

This PivotChart is saved as PurchasePivotChart. You can, of course, play
with chart types, colors, fonts, backgrounds and many other properties: experi-
mentation is your best approach here.

� We experimented with changing the colors for each of the bars in the chart and, whatever
we did, we couldn’t persuade Access to reflect those new colors in the legend. Perhaps
you can in your version....

The Chart wizard

� The Chart wizard will place a Microsoft Graph chart onto a form. To use this wizard, you
must have Microsoft Graph installed, which you will do if you performed a standard
Microsoft Office installation.

190

10 Forms again – design

�

�

From the Forms tab in the database window, click New, select Chart Wizard
and the table called Pivot.

In the first step, select the Person, Item and Number fields and click Next.
Then accept the default, a column chart, by clicking Next in the second step.
Now the wizard shows you its default choice of what the chart will show:
people along the X axis, quantity up the Y axis and with items as the series.

This is fine for our demonstration so click Next, give it a title and click Finish.

191

10 Forms again – design

Oh. Compared to the PivotChart, it looks rather boring and rather poorly set out.
If, however, you’re a seasoned Office user, this chart should look familiar because
it is simply a Microsoft Graph chart. The good news is that Access uses this stan-
dard Office component, so if you are used to embedding graphs into, say, Word
then you should find that from within Access it works in much the same way.

Since this book is about Access, rather than Office, we don’t intend to spend
much time on a standard Office component but at the risk of boring those who
are familiar with Graph, it is worth making just a couple of points. If you right
click on the chart you can get to see the properties as usual. However, from the
right-click menu you can also select Chart Object, Open.

This will open up Microsoft Graph and if you right click on the chart now, you
can select Chart Options

and start to tweak it.

192

10 Forms again – design

Summary

Changing the appearance of your forms and jazzing them up with colors, fonts
and graphics is enormous fun.

It’s also good practice for manipulating objects and setting properties, so we
really recommend that you spend some time experimenting at this point. But
beware: don’t go too mad with your works of art. Excessive jazziness often
looks untidy and unprofessional, an impression you’re unlikely to want to give,
especially for forms to be used by others. Restraint is the key.

The same is true for PivotTables and PivotCharts: they’re tempting to use
because they give such flexibility in the way data is presented. Think about the
data and what the user of the form will hope to see in that data: try to use the
Pivots only when they will add clarity and value.

The file chap10end.mdb contains the forms created in this chapter.

193

10 Forms again – design

Chapter 11

Forms again – controlling data
entry

Data validation

Time devoted to ensuring that only sensible data gets into your database is
almost always time well spent. The motivation for collecting data and storing it
in a database is that you want to extract it later, to find specific information, to
see if any trends develop, to find any unexpected overlaps or omissions. The
information you hope to take out can only ever be as accurate as the data that’s
entered so data validation at the point of entry for new records is crucial.

This topic has already been mentioned in Chapter 8 and various methods of control-
ling data entry were covered. However, these were all implemented from the
Design view of the table destined to contain the data. Further data validation
methods are available in Access’ armory and can be put onto a form in Design view.

A tiny bit of theory

This book is aimed at getting you up and running with Access as quickly as
possible. You may, however, be wondering why Access provides two very
different places where data entry can be controlled – the table and the form.
Well, flexibility is the trite answer, but it’s an unhelpful one unless you know
why such flexibility is useful. Think of it this way. You can have many different
forms and queries based on a table. If you put a control on how data is entered
into a table, then that control will automatically be applied to every form and
query that uses that table. No new form or query will be allowed to subvert the
rule. However, if you place the control on a form then that control applies only
to data entered using that form. In other words, controls placed on tables are
more all-encompassing, more powerful. There are times when that power is

194

very useful (when a control needs to be rigorously applied to the data), and
times when it is unhelpful (when the control needs to be applied sparingly).
The choice is yours, which is where the flexibility comes in.

Form controls introduced

Form controls are objects that sit on forms to display records, perform actions or
make it easier for people to use the form. There are different types of control, as
discussed below, but they can all help you determine what can and can’t go into
the database by their actions or by pointing the way. Some controls are passive
– labels, for instance, just sit there providing helpful information to the user of
the form. Some are active, for example, only letting predetermined entries into
a field (as does the Lookup Wizard data type mentioned in Chapter 8).

The best way to see how they work is to build some, so that’s what we’ll do –
build a form that contains all of the elements described in the chapter. Clearly
this is going to lead to a cluttered, complex form – exactly the sort that we
would normally recommend you try to avoid creating. However, we hope that
you will forgive the excesses and appreciate that this is just an example of what
you can do, not of what you should do.

Bound, unbound and calculated controls

Controls come in three flavors, bound, unbound and calculated. A bound
control is tied (or bound, hence the name) to a field in an underlying table or
query and this underlying field is the data source for the control. A bound
control is used to display existing data from a field in the underlying table for
inspection, editing and for entering new data.

An unbound control doesn’t have a data source. Unbound controls are used to
display messages, lines, rectangles and pictures that help users navigate and
use the form.

A calculated control has an expression as its source of data. The expression can
manipulate data from a field or fields in the underlying table or from another
control on the form. Calculated controls are useful for showing information
that’s helpful for users of the form but not sensible to store in the table because
it can be derived easily.

� As we did when discussing queries, we are keen to convince you that storing derivable
data in a table is usually a bad idea. Just as queries can be used to calculate derivable data
when you need it, so can forms.

195

11 Forms again – controlling data entry

�

Overview of controlling form controls

Adding a form control

To place a control onto a form, you must be in Design view with the Toolbox
open.

� When you’re starting to work with controls, it’s helpful to activate the Control wizards
by clicking the button at the top of the Toolbox. This will activate a wizard for some of the
more complex controls when you place them on the form.

Select the control from the Toolbox by clicking on it. Move the cursor over to the
form. If you just click on the form a control of default size will appear. Or you
can click and drag to outline the shape and size of the control you want; as this
can be altered later, pinpoint accuracy isn’t needed at this stage. On releasing
the mouse button, the control appears in place on the form, or a wizard runs to
help you to build it. Once it’s complete, flip to Form view to see the result.

Deleting a form control

In Design view, click on a control so that its handles appear and press the Delete
key. Elements of some controls can be deleted separately: the label alongside an
option button or check box can be removed, leaving the button itself, by
clicking on the label and pressing Delete.

Moving a form control

Click anywhere on a control so that its handles appear. Aim the cursor at one
edge until it shows as an open hand then click and drag to move it. Elements of
controls can be moved independently by aiming the cursor at the top left
corner of the element to be moved. When the cursor looks like a pointing hand,
click and drag the element to its new position.

Sizing a form control

To change the size of a control, select it by clicking and place the cursor on one of its
sides. When the cursor shows a double headed arrow, drag to enlarge or reduce

196

11 Forms again – controlling data entry

�

the control’s size. Placing the cursor on a corner so it shows a slanting double
headed arrow lets you drag to change the width and height simultaneously.

Formatting controls

Most controls have formatting properties; these are listed on the Format tab of
the Property sheet. You can change the Back Color of an option group, give an
option button a sunken Special Effect and so on by clicking to select the object
in question and editing its properties in the Property sheet.

Selecting multiple controls for editing/formatting

There are two ways to select multiple controls for batch editing or formatting.

Click on one object then, with the Shift key pressed, click on the other objects
you wish to select. When they all have handles, proceed with the changes.

Alternatively you can start from anywhere on the Detail section background
and click and drag to pull out a rectangle to encompass (or at least pass
through) any object you wish to select. When they all have handles, changes
can be implemented.

Controls in use

OK, that was the overview and now we’re going to start with a blank form and
add a number of controls, but bear in mind that when you use these controls for
real, there is absolutely nothing to stop you adding them to a form which has
been generated with a wizard. Open up the chap11start.mdb file, select the
Forms tab and click on the New button. In the dialog that appears, click on De-
sign View, select the ClubMembers table and click OK.

197

11 Forms again – controlling data entry

A new form appears, a blank canvas upon which you can work your magic.
Make sure that the toolbox, Property sheet and field list are all open. Click on
the Format tab of the Property sheet.

Access can perform automatic error checking while you’re building a form if
you wish. This will be easier to demonstrate once we have a control on a form,
so we’ll revisit this topic in a moment.

198

11 Forms again – controlling data entry

Types of form control

Label

Put a label on the top of the blank form, type in some text and press the Enter
key.

The Caption property of the Label shows as the text you have just typed in. We
aren’t going to keep on telling you to look at the properties of the controls you
create because that will get boring, but we do recommend that you keep refer-
ring to them throughout this exercise because it will give you a feel for the
parameters you can set for each control. As an example, have a look at the prop-
erty called ‘Display When’ for the Label. Its possible states are Always, Print
Only and Screen Only. These are ideal for messages to users that you don’t
want to appear on printed output, or vice versa. You can also use the Property
sheet to set the font size, color etc, and/or you can do this using the tools in the
formatting toolbar at the top of the screen. (If you can’t see this toolbar, right
click on the menu bar and select it from the list).

Labels can say anything you want them to. So, for example, you might find that
users were continually trying to enter dates in DD/MM/YYYY format, when
your database was expecting MM/DD/YYYY. You could add a label next to the
date text box saying: ‘Please enter dates with the month first, then the day and
finally all four digits of the year – for example, 05/23/2004.’

199

11 Forms again – controlling data entry

Combo Box

Combo boxes are great for entering data into fields where only a limited range
of values is likely. For example, entries in the Title column of the
ClubMembers table are likely be mainly Ms, Miss, Mrs and Mr entries with a
scattering of Dr, Prof and Rev entries and maybe some in different languages,
like Mme or Herr. Users of your form can be presented with a list of the com-
monest titles for ease of selection and still have the option of typing in rarer
ones. Or alternatively, you can force the user to use only the options that ap-
pear in the combo box. It’s up to you, and once the combo box is complete, you
can swap it between these two behaviors by changing the ‘Limit to List’
property.

� During the course of this chapter, you’ll notice that fields appear in the ClubMembers ta-
ble without so much as a by-your-leave, like the Title field referred to above. Don’t worry
about this, it’s simply so that we have data to hand for illustrating various types of con-
trol.

200

11 Forms again – controlling data entry

�

To create a Title combo box, place a control on the form and the Combo Box
wizard opens.

Click the middle button to type your own values and in the next step, leave the
number of columns as one and start entering a title into the first cell. Fill in the
entries you want (Access posts the last one even if you don’t click in the gray cell
to remove the editing pencil)

and click Next. Now click the ‘Store that value...’ option and select the Title
field.

201

11 Forms again – controlling data entry

Finally, label the combo box and the process is complete. This is how the control
will appear to users: a click on the arrowhead displays the list ready for a selec-
tion to be made.

Although highly useful in this instance, combo boxes really come into their
own when used in a database with more than one table so we’ll revisit this
useful control in a later chapter (Chapter 18).

Automatic error checking

If this checking is turned on (which is the default) you’ll notice, once you’ve put
a combo box or other control on your form, that the very top left corner of the
label has turned green. Make a single click on the label and the tip of the green
corner turns pink and a warning button appears alongside it: this is the Error

202

11 Forms again – controlling data entry

Checking Options button. Move the cursor over the button and pop down its
list:

It’s telling you that your label is not associated with a control on your form. This
is perfectly true but also perfectly reasonable in this case, where the label is
simply announcing the purpose of the whole form. Selecting ‘Help on This
Error’ tells you more and selecting ‘Ignore this Error’ means that Access will no
longer flag this option as harboring a possible error, turning off the green
marker and the button. Having to choose this option is mildly irritating because
no error has been made: we know exactly what we’re doing.... In this case.
However, there may be times when the Error Checking Options button tells
you something you didn’t know. When you’re developing forms it’s quite
possible to lose track of what you’re doing (the phone rings, the dog barks,
someone shouts “Coffee?”) Then you may find it useful for Access to report an
error like ‘This control has an invalid control source’ and to tell you it’s because
there is no such field in the field list.

You can, however, turn error checking off completely from the Tools menu.
Click Options... and the Error Checking tab, deselecting the Enable error
checking box.

Text Box

Text boxes are most frequently used to show the contents of a field in the
underlying table. Put a text box onto the form, making sure that you position it
over to the right to accommodate the label to the left.

A newly-created text box is unbound; the Control Source property (under the
Data tab) is blank and the field itself reads ‘Unbound’. Click to pop down the

203

11 Forms again – controlling data entry

Control Source list and pick a field to associate with the text box: we’re using
FirstName.

You now have a bound text box. You can also alter the text of the label to some-
thing more helpful.

Take a look at the field list.

204

11 Forms again – controlling data entry

This offers a quick way of adding text boxes to a form. Click and drag a field
from this list to place it and its label on the form. Text boxes adding in this way
are automatically bound to the field in the underlying table. They also automat-
ically gain a caption: if you entered one in the Caption property when you
designed the table, it will be used. If you didn’t the field name will be used
instead. Add a text box for data from the LastName field using this method.

‘Text box’ is a slightly misleading term since it implies that only text can be
displayed; in fact, text boxes can display numerical information and can also be
used to perform calculations. Just to show how it is done, we’ll create a text box
that performs a ‘calculation’ on some text.

Now might be a good time to save your new form. Thus far, Access has referred
to it by the default name of Form1 so click the Save button and type a name
when prompted. Our example is called ClutteredForm because by the end of
the chapter that’s how it will look.

Then add another text box and instead of binding it directly to a field, click on
the ellipse button which appears at the end of the Control Source property.

205

11 Forms again – controlling data entry

This opens the Expression builder. In the left pane select ClutteredForm, in the
middle pane choose Field List and double click on Title in the right hand pane.

The formula we are going to build is:

[Title]+" "+[FirstName]+" "+[LastName]

which is easiest to build using a mixture of the keyboard and options selected
from the expression builder.

206

11 Forms again – controlling data entry

When it’s complete, click on the OK button and this formula appears as the
control source (plus a leading equals sign that Access has added).

Change the label for the text box to something like Full Name and then inspect
it from Form view. It should simply add (or concatenate) the three text fields
into one.

Toggle Button, Option Button and Check Box

These three work in much the same way: the main difference between them is
their appearance on the form so we’ll describe how to create and use a Check
box and leave you to experiment with the others.

A check box button can be bound to a Yes/No field. We’re about to bind a check
box to a Yes/No field called DrivingLicence. Once it is in place on the form,
clicking on the check box (or on its label) toggles it between two states – checked

207

11 Forms again – controlling data entry

and unchecked. A check mark indicates Yes and unchecked No. When existing
records are inspected, the toggle button reflects the entry in the field, appearing
to have been selected if a license is held and vice versa.

So, put a check box control on the form, set the Control source to be the field
DrivingLicence and amend the label accordingly.

Just for fun, we’ve added a toggle button and an option button and bound all
three to the same DrivingLicence field. An option button doesn’t automati-
cally come with a label so you can choose whether to add one or to enlarge the
button sufficiently to take a suitable caption as we’ve done here.

We would never suggest, even for a moment, that binding more than one of
these controls to the same field was sensible for a real form, but it does allow
you to play with all three.

208

11 Forms again – controlling data entry

Option Group

OK, this is where we start to work with the more complex controls that let you
create really powerful forms. Suppose you want to collect information which is
more complex than Yes/No – perhaps you offer different types of club member-
ship – Gold, Silver and Bronze. You could simply provide a text box on the form
but this solution gives people entering the data little information about the
available options. It is much better to provide a control to guide them and
which, at the same time, only allows them to select a viable option.

An option group is a control that contains other controls of the toggle button,
option button or check box type. Its purpose is to allow users to make a single
selection from a group of two or more items with each item labeled.

Each option in the group is given by default an arbitrary value (though you can
change these) and when an option is selected by the user of the form, the
option’s value is stored in a field in the underlying table.

� In fact, the value doesn’t have to be stored in the table, it can be stored by Access for later
use. However, this ‘later use’ bit is only likely to be useful when you’re using Access’
built-in programming language so it can safely be ignored for now.

I’ve added a field to the ClubMembers table to contain the type of member-
ship. An option group to select the membership type can be placed on any form
based on that table. Open ClutteredForm in Design mode, click the Option
Group button and drag an outline onto the form. This runs the Option Group
Wizard. In the first step you label the options.

209

11 Forms again – controlling data entry

�

Click Next and in the second step you decide whether to set one of them as the
default; this is usually the option that’s chosen most frequently.

The next step shows the values that are assigned to each option: alter them if
you wish but in this case, the values look entirely reasonable – 1 will represent
Gold, 2 Silver and 3 Bronze.

210

11 Forms again – controlling data entry

Next you determine what happens to the choice made by the user. As discussed
above, the value is normally stored in a field which can be chosen from a pop
down list. Here I’ve selected the MembershipType field.

Choose the type of control in the next step and the style of display

and in the final step, give the option group a caption before clicking Finish.

211

11 Forms again – controlling data entry

The completed option group looks like this in Form view:

Command Button

A command button lets you give users the option of issuing a command to
Access. Actions such as saving a record, printing a form or moving to the
previous record can be performed by clicking a command button. Placing
buttons for common tasks on your forms can make those forms much easier to
use, so let’s experiment.

Place a command button onto ClutteredForm: this activates the Command
Button wizard. In its first step you determine what the button will do. There are
six categories of action, each with between four and eight actions. Here I’ve se-
lected the Goto Previous Record from the Record Navigation category.

212

11 Forms again – controlling data entry

In the second step you can decide whether to display text or an icon on the
button.

� Checking Show All Pictures gives a much larger range of icons, including:

and

Finally, give a name to the command button like GoBackOneRecord. This
name isn’t shown on the form but is shown under the Other tab in the Property
sheet.

213

11 Forms again – controlling data entry

�

Try out the button in Form view: it works just as you’d expect, even coming up
with an error message ‘You can’t go to the specified record’ if you click it when
inspecting the first record.

Line and Rectangle

These controls let you place lines and rectangles on your forms. Though simple,
these can be used to group fields and controls and generally lead the eye of the
user. Try changing a line’s Border Style, Color and Width properties to add
emphasis.

Image

With this sort of control, images can be put onto forms. Images can be anything
from output from a painting package to off-the-shelf clip art. Placing an image
control onto a form was covered in Chapter 10.

214

11 Forms again – controlling data entry

More Controls

Wow! Clicking this icon produces a vast list of weird and wonderful controls,
some available and some not. The extent of this list is an indication of how
important Access controls have become since the product first appeared. While
some of these extras come from Microsoft itself, many more come from third
party suppliers, all of whom think it worthwhile to create specialist controls for
Access users. Furthermore, this list is far from exhaustive: even more controls
can be bought and/or downloaded from the internet.

We can’t possibly cover all these controls here so we’ll select one to look at in
some detail and leave further investigation to you. We’ve chosen Calendar
Control 11.0 because the handling of dates can be a pain in the neck and this
control does a great job of keep things in order.

Click the More Controls icon and select Calendar Control.

215

11 Forms again – controlling data entry

Drag to outline a large area on the form: about 5 × 7 cm (2 × 3 inches) is not un-
reasonable. When you release the mouse, a calendar appears, looking like this:

This gives users a familiar way in which to enter dates: the month and year can
be selected from lists if the date isn’t in the current month and then the day se-
lected by clicking on the appropriate cell in the calendar. Here it is in use with a
label added to the form so users can enter a member’s joining date.

216

11 Forms again – controlling data entry

The control source for the calendar control has been set to a field in the
ClubMembers table called JoinDate and this is where dates entered by users
will be stored. If you set the Default Value for this field to be Date() – go to the
Design view of the table to do this – the calendar control will default to the
current date. Close the form and reopen it to see this in action.

As you can see, with its default settings the calendar control takes up a large
area of ‘form real estate’. This can be reduced considerably by tweaking its
properties without reducing its ease of use.

This control has two sets of properties. It has the usual tabbed property sheet
but it also, if you double click on it (or try Edit, Calendar Object, Properties from
the main menu), has a different set of properties, looking like this:

217

11 Forms again – controlling data entry

By customizing what the calendar shows (unchecking the Month/Year selec-
tors, choosing the English (Medium) Day Length display format, a flat Grid Cell
Effect and so on) you can reduce the space required.

The choices you make depend on how your database is used. For instance, if
new member records are added to the database shortly after their joining date,
month and year selectors are largely unnecessary but if new records are only
added every quarter, then a pop down list for moving between months
becomes desirable. If you had a book database and were entering the
publishing dates of tomes from Caxton onwards, then a pop down year selector
would be vital too.

Further controls

The controls covered above should give you a reasonable collection for experi-
mentation and you may find you never need anything further in the control
line. You may, however, wish to skim through the rest of this chapter so you
have an overview of what else is possible with Access controls but leaping to the
next chapter is perfectly OK too.

218

11 Forms again – controlling data entry

Bound Object Frame

A bound object frame control displays a picture, a chart, a document or any
object that can be stored in an OLE Object field. This control is bound to a field
in an underlying table and that field must be of the OLE Object type. So, for
example, you might use an OLE Object type in a contacts table to hold a picture
of the person concerned. You could use a bound object frame control on a form
to view the picture.

On the other hand, if the OLE object was an Excel worksheet, for instance, you
could double click the control to open up Excel so the worksheet can be
inspected. In other words, this control type permits the object to be edited (or
even created) from within the form. This isn’t always sensible but you can
choose whether to link allowing edits or not when you enter records into the
OLE Object field.

Open the ClubMembers table and you’ll find a field called Photo of the type
OLE Object. We provide four sample image files in the AccSamp folder which
were culled from Microsoft Office’s store of clip art (simon.bmp, maria.bmp,
paula.bmp and david.bmp). These should have been moved to your hard
disk along with the sample Access files. The images can be used as portraits of
the first four members in the table. To enter an object into the field, find the
record relating to Simon Jackson, right mouse click on the OLE Object field and
select Insert Object. Select the Create from File option and browse to the
simon.bmp file, click the Link check box but not the Display as Icon check box.

Add the other three mug shots in the same way.

219

11 Forms again – controlling data entry

OK, so Simon’s image is now in the table and we want to see it in the form. You
can achieve this automatically simply by getting Access to auto-generate a new
form (try it to see) but we also want to show you how to do it manually. So,
create in Design view a new form based on the ClubMembers table, drag a
bound object frame control into place, delete the label (users are unlikely to
need to be told that they’re seeing members photos) and specify the control
source of the frame itself as the OLE Object field called Photo. Save the form as
FurtherControls.

If you also set the Size Mode (on the Format tab) to Stretch, each photo neatly
fills the available space; although there may be some distortion if you have
made the dimensions of the control very different from those of the original
image. Check it out in Form view. If you double click on the image, you will find
that you can give Paula a false moustache and/or red nose. If you feel that such
power might be ‘abused’ by users of a real form that uses real photos (you know
your users better than we do) you can disable editing with the Enabled setting
on the Data tab: set it to No.

� David Hassall appears to be something of a joker anyway, or perhaps he’s a New
Zealander.

Finally, I’ve copied the concatenated full name field from ClutteredForm,
pasted it in under the bound frame and this is the result.

Unbound Object Frame

As described above, a bound object frame points to an object that is stored in the
table so Paula’s picture appears on the form only when you are looking at her
record. What if you want the same object (say a chart from an Excel worksheet)
to appear on the form irrespective of which record is being displayed? OK,

220

11 Forms again – controlling data entry

�

given the heading of this section, there are no prizes for guessing: you use an
unbound object frame control. An unbound object frame control displays a
picture or a chart that is not stored in the underlying table and hence is not asso-
ciated with any particular record. As with a bound object, it’s possible to edit
the file displayed with this type of control; if it’s displaying an .XLS file created
with Excel, double clicking upon the image opens up Excel.

With this type of control, users could, for example, have access to a worksheet
showing the current membership costs by double clicking an Excel icon on a
form. As with the images, the values in this worksheet do not have to be avail-
able for editing. Here we’ll illustrate placing such a control on a form to give
read-only access to membership rates.

Drag an unbound object control into place, select Create from File, browse to
the file (charges.xls is in the AccSamp folder) and select the Display as Icon
option but not the Link option.

To change the icon or the label beneath, click the Change Icon button.

221

11 Forms again – controlling data entry

In the Properties sheet, set Enabled on the Data tab to Yes. This makes the
control active in form view so that a double click on the icon launches Excel. The
Locked property should be left set to Yes so that users can now inspect the
worksheet by double clicking the icon on the form but will not be able to alter
the data on the sheet.

Double clicking the worksheet icon opens Excel and displays the membership
charges worksheet. (When Excel is open, the control is greyed out on the form).

You’ll find that you can, in fact, make changes to the worksheet but when you
close it, Access presents a message saying that changes won’t be saved when
the form is closed. However, the change persists when you open the worksheet
from another record but, when you close the form and re-open it, the change
will indeed not have been saved.

� When I follow these steps to the point where I’ve launched Excel for the first time and the
worksheet is on screen, a ‘software anomaly’ occurs when I close it. Excel remains visible
and the title bar for Access and for the FurtherControls form start flashing. Clicking any-
where within Access closes Excel with a message telling you that any changes will not be
saved, even if you haven’t altered the worksheet in any way.

This seems only to occur the first time the unbound control is used: thereafter Excel can
be closed to return smoothly to Access. No harm is done but it’s a little messy. I suspect
something isn’t quite right here: maybe a point release or patch will clear up the

222

11 Forms again – controlling data entry

confusion so you may not even see this effect. I only mention it in case it confuses you, as
it did me on first sight.

The work completed thus far in this chapter is in chap11controls.mdb.

Updating properties

Here we’ll look again at the Property Update Options buttons mentioned in
Chapter 8 and show how useful they can be. Add a simple text field to the
FurtherControls form to show a member’s email address.

Moving through the records, you notice that some email addresses contain
upper case letters. (Have a look at a Paula’s). Save the form and go to the
ClubMembers table in Design mode. On the General tab for the Email field,
you’ll see a property called Format. You can turn all the characters in a string to
lower case simply by adding a < symbol to this property. (To turn strings to
upper case, type in >).

As soon as you move off the Row Source row, the Property Update Options
buttons appears with its little bolt of lightning.

� If you don’t see it, click Tools, Options, select the Tables/Queries tab and check the box la-
beled ‘Show Property Update Options buttons’.

223

11 Forms again – controlling data entry

�

�

Click (or right click) it and select the ‘Update Format wherever Email is used’
option. An Update Properties dialog appears, asking if the four forms
(including FurtherControls) and the report that use the fields should be so
updated.

Answer in the affirmative, save and close the table and return to the form. Now
inspect Paula’s email address from FurtherControls and you’ll see it all in lower
case. (Put your cursor on the email text box to see the address with its original
formatting).

Property Update can be a great time and effort saver. It would have been rather
tiresome to have had to track down every form and report where the Email
field is used and change them all.

The chap11end.mdb file contains this last tweak as well as other progress
from this chapter.

224

11 Forms again – controlling data entry

Summary

Despite all that this chapter has covered, it still isn’t a full list of controls; we’ll
cover some more in Chapter 18. As we said earlier, controls are a very important
part of Access!

In this chapter we’ve looked at putting sophisticated controls onto your forms.
Choosing the right one for the job should be looked at both from the point of
view of the data it lets into the table and from that of the user. The ease with
which controls can be added, experimented with and removed lets you try
several different approaches before deciding upon the one that’s most suitable.

225

11 Forms again – controlling data entry

Chapter 12

Reports again – customizing
printed output

Report types

Reports come in all shapes and sizes as we’ve already seen from a first play with
the Report wizard in Chapter 6 and from the three types of AutoReport (the
vanilla one from the New Object button and the Tabular and Columnar ones
from the New button on the database window).

It’s worth taking another look at the Report wizard as it provides much flexi-
bility in report construction; furthermore, a wizard-generated report is often
the best starting point for creating highly customized reports. A report is all
about setting out information on the page and this is where the wizard really
scores as it can produce a consistent layout very quickly. If it isn’t exactly what
you want, it’s much easier to go to work on this approximation than to start
from scratch. I almost invariably tinker with the wizard-generated report to fine
tune it to my exact requirements.

Once again, it may not be immediately apparent what the wizard is going to do
with some of the information it asks of you on the first run through. However,
the reasons should become clear when you see the end result.

226

The Report wizard again

Open the chap12start.mdb file and go to the Reports tab. Click the New
button to open the New Report window, choose a table (ClubMembers) and
launch the Report wizard. Select some fields, as shown in the screenshot below:

and click the Next button. Your choice in the second step determines the
options the wizard will offer in a later step. If we set a grouping level here
(something we didn’t do in Chapter 6) you’ll be able to choose from the six
layout options shown in step four. So chose to group records by Country.

227

12 Reports again – customizing printed output

In the third step, elect to sort within the group by LastName and then by
FirstName.

In the fourth step you can choose the layout of the report.

228

12 Reports again – customizing printed output

We looked at columnar and tabular AutoReports in Chapter 6 and if you
thought such layouts were useful but that you could do with a bit more control
over the fields, the sort order and so on, this will be a welcome sight. Pick one,
say, Left Align 1, complete the wizard (our choices were Compact style and
CountryReport as a title) and you should see something like this:

At this point the meaning of the groupings should become apparent. The
report has found all of the records for club members in France and grouped
them together. Within that group it has sorted them by last name, and members
with the same last name are arranged alphabetically by first name.

229

12 Reports again – customizing printed output

Try running the wizard again but this time group the report by Country and
City. This time there will be two levels of grouping in the report.

Now that you have an idea of what the wizard can do, run it again and try out
the different layouts in step four to see what effects they produce.

230

12 Reports again – customizing printed output

The Label wizard

English is a wonderful language; it has words of astonishing subtlety. For
example, I send out useful mail shots to my customers but I receive junk mail. It
reminds me of the (probably apocryphal) sign seen in a store:

We buy junk,

we sell antiques.

Whatever your views on mail shots (and, indeed, the long-term viability of
snailmail), the ability to generate printed labels is still a major asset. Access
handles the printing of labels as a specialized type of report – a label report –
and it can be based either on a table or on a query. We’ll illustrate the latter
option, so build a query to pull out the names and addresses of all the members
in Europe. (Hint: use the NOT operator, introduced in Chapter 9, to exclude all
the records with USA in the Country field). Call the query EuropeMembers.
From the Reports tab, click New, select the new query and launch the Label
wizard. The first screen lets you choose your label size from dozens of sizes
from several manufacturers.

(In the unlikely event that none of these are suitable, you can click the
Customize... button to define a new label).

The next step lets you choose the font that will be printed on the label, its size,
color and weight and whether it should be italicized or underlined.

In the third step you build a template for the printed labels, choosing the fields
you want in the order you want them. Several fields can be placed on one line,

231

12 Reports again – customizing printed output

which is very useful for concatenating first and last names. Double click on the
Title field in the Available fields list to move it into the Prototype label, type a
space and double click to add the FirstName field, do the same and add the
LastName field. Any characters you want to appear on every label can be
added to the prototype too.

In the next step, labels can be sorted to print in a particular order, by city or by last
name, or by city and then by last name. In the final step, name the new report as
MailingEurope and click Finish to see a preview of the sheet of labels.

232

12 Reports again – customizing printed output

The Label wizard is a great time-saver (the longest part of the job is often
finding a ruler so you can measure and identify the labels you are using) and
once you’ve built a label report, you can use it time and time again.

The Chart wizard

Also in the New Report window is a Chart Wizard option: we covered the use
of the chart wizard in Chapter 10. Essentially it works in just the same way as it
does when used in forms: charts, like labels, can be handled as reports.

Building a customized report

The time to investigate the tools offered in Design view is when a
wizard-generated report doesn’t look exactly right. You can, of course, design a
report from scratch on a blank design screen but it is far more common to let the
wizard do the grunt work and tweak the results.

Find or generate a report: here’s mine, EmailList, in the Print Preview view.

Now click the View button to see the Design view which should look familiar
from the previous chapters on form design.

The design area itself looks somewhat different having rather more gray bands
across it, labeled Detail, Page Header and Footer and Report Header and
Footer. As you’d expect from exposure to forms in Design view, any objects in
the Report Header are printed only once at the top of the first page and any
Report Footer objects occur only at the very end of the report. Objects in the

233

12 Reports again – customizing printed output

Page Header and Footer are printed at the top and bottom of each page. Objects
in the Detail section are printed once for each record that is included in the
report.

Text boxes and labels can be moved or removed in exactly the same way as they
can on a form. Here you might decide that it’s silly to have the city sandwiched
between last and first names, so simply drag the labels and text boxes to new
positions. Labels and text boxes in this report aren’t linked in the same way as
they are on forms so click on one and Shift-Click on the other to select a pair
simultaneously, or by dragging a rubber band around/through them. Labels
and text boxes can be moved together like this despite being in different
sections of the report.

Flip between Design and Print Preview views as you work to see how things
look.

The text in a label, such as the one in the header, can be edited by clicking twice
to get a text-editing I-beam. These clicks should not be as close together as they
are in a double click: double clicking highlights the whole entry which is fine if
you want to, say, delete rather than edit it.

The reports illustrated above appear in the chap12reports.mdb file.

234

12 Reports again – customizing printed output

What else can you do on a report?

Sometimes you don’t just want to print out the data from a table, you want to
present it for a specific use. Access reports let you summarize data, calculate
values and present fields in logical groups.

As a rule of thumb, most reports of any complexity are based upon a query.
Queries are designed to make it easy to pull out specific information but are not
ideal for generating totals, subtotals, averages and so on or for grouping opera-
tions. The best approach, therefore, is to design a query to locate all the records
you need and add subtotals and totals during the report design stage.

To illustrate the further abilities of reports, I’ll use the file chap12start2.mdb
which is a tableful of specifications for widgets giving their shape, color,
components and so on.

While this won’t bear scrutiny as a fine upstanding example of table crafting,
it’ll be fine for demonstration purposes.

235

12 Reports again – customizing printed output

Grouping data

As described above, the wizard lets you specify various levels of grouping.
Using your skill and judgment, create a report that groups the widgets by shape
and by color. My report, called WidgetShapeColor, is shown below.

236

12 Reports again – customizing printed output

It has two levels of grouping, is sorted on ItemID and uses the Outline 1 layout.
Looking at the Design view of this report

you can see the levels of grouping represented by the extra headers. There are
the usual report and page headers but there’s also a Shape Header and a Color
Header. The labels and fields on the shape header appear every time a new
shape is displayed in the report and those on the color header for each color
within a group of shapes.

New groupings can be added to a wizard-generated report from the Design
view by clicking on the Sorting and Grouping button in the main menu bar.

237

12 Reports again – customizing printed output

The present settings are displayed,

those which were chosen using the wizard. The Field/Expression column shows
the fields on which records are sorted and/or grouped. The symbol to the left of
the Shape and Color field names indicates that records are grouped by these
fields. The lack of such a symbol alongside the ItemID field tells us that the field
is only sorted, not grouped. The sort order is shown in the second column.

You can add another level of grouping here. To group widgets by the number
of nuts and bolts in the component, add the Nuts/Bolts field to the Field/Expres-
sion column: do this by dragging the field in from the Field List. (Alternatively,
double click in an empty Field/Expression cell and the first field from the Field
List will appear. Further double clicks cycle through the remaining fields so you
can choose the one you want). The Sort Order will default to Ascending and in
the Group Properties panel, set the Group Header property to Yes. The
grouping symbol appears alongside the Nuts/Bolts entry.

Lastly, drag the Nuts/Bolts grouped field up until it’s below the other two
grouped fields. This ensures that records are grouped first and then sorted.

Close the dialog and the new Nuts/Bolts Header section is now in place. Into
this section I want to place the Nuts/Bolts label and the associated text field.
Drag the Nuts/Bolts label down from the Color Header section and the
Nuts/Bolts field up from the Detail section.

238

12 Reports again – customizing printed output

This is part of the result.

Hmmm. Not ideal, is it? I think the ItemID, Hinges, Washers and Screws labels
need to move down from the Color Header into the Nuts/Bolts Header section,

like this:

239

12 Reports again – customizing printed output

Thus, when seen in Design view, the report looks like this.

That’s better.

By adding grouping levels, data can be displayed in a report that gives promi-
nence to the information you wish to convey.

Summarizing data

This is where reports begin to add value to a report that’s based on a simple
table or query. In the following example, we’ll add subtotals for the number of
widgets in each grouping for shape, color and nuts/bolts category and also a
figure at the end of the report of the total value of all stock held.

To add the subtotal and total fields you build a field expression, that is to say an
expression or formula that uses values from existing fields to calculate new
data. As you’ve heard me say (or read me write) redundant data should not be
stored in tables and therefore the Widget table doesn’t store the value of stock
held. However, from the values in the Price and Stock fields, the value of stocks
held is easily calculated with a field expression.

Using field expressions

Make a copy of the WidgetShapeColor report, call it WidgetTotals. Place a
new text box in the nuts/bolts header section. Give its label a memorable Name
and set its Caption to read Stock Value. Call the text field itself something suit-
able, like StockCalc, and change its Format to Currency to match the data

240

12 Reports again – customizing printed output

type of the Price field in the Widget table. For the Control Source property, you
can either type an expression straight into the cell or you can call up the Expres-
sion Builder. Create an expression that reads:

=Sum([Price]*[Stock])

which will multiply the value in the Price field by the value in the Stock
field. Here it is as the Control Source property:

Flip to Report view and there’s the calculated subtotal.

241

12 Reports again – customizing printed output

Back in Design view, copy the label and text field you’ve just created to the
report footer, changing the label to read Total Stock Value. In Report view,
you’ll see that the total stock value has been calculated.

This is the last page of the report showing the two calculated fields generating
two subtotals and the total stock value.

From this you can see that it is the position of a calculated field that determines
how the calculation is performed: when placed in the nuts/bolts header section,
it calculates the stock value of all the widgets that fall into each nuts/bolts cate-
gory. When placed in the report footer, it calculates the stock value of all
widgets in the report. If you were to place the same field expression in the color
header section, it would calculate the stock value for all the widgets in each
color category.

Both the reports based on the Widget table appear in the chap12end.mdb
file.

Calculated fields can be very much more complex than this simple example.
Access has a huge range of built-in functions for such tasks as handling dates
(calculating the number of days between two dates, for instance), for manipu-
lating text and for calculating averages, standard deviations and the like. Very
often, however, it’s simple information like subtotals within categories and

242

12 Reports again – customizing printed output

grand totals that make the difference between a clear and informative report
and an impenetrable mass of data.

Formatting your report

The method of formatting the various elements of a report is exactly the same as
that described for making formatting changes to a form, covered in Chapter 10.

Inspect the Properties sheet for the object to be formatted, locate the element
you wish to change and edit its property accordingly. Constraint should be
applied when designing reports too. The information you are trying to convey
can become lost in too many fancy effects and irrelevant graphics so be abste-
mious with these additions.

Summary

An Access report is an immensely flexible method of preparing data for
printing, adding value to the raw data by offering many ways of presenting it
and illustrating it with charts. The same data can tell different stories
depending on how a report is structured, so matching the report to the
intended audience or to the point you are hoping to carry is worthwhile. This is
often the hardest aspect of creating reports.

243

12 Reports again – customizing printed output

Chapter 13

Where are we now?

Single tables for simple databases

So far we have looked at databases where a single table holds all of the data in
which we are interested at any one time. Queries, forms and reports have all
been based either on that table or on queries that pull data from the one table.
Using these components we have looked in detail at how Access makes it easy
to extract, display and print out the data from a single table database.

The value of single table databases

A database that’s straightforward and stores all its data in a single table can be
the basis of a highly valuable application. There are many worthwhile types of
single table databases, from address lists and birthday card lists to inventories,
small catalogs and many more. (If you are patiently waiting for the ‘But’, it’s
coming at the start of the next paragraph). If a single table solution is right for
the task, despite its simplicity, then use just a single table. When I was a young
database designer I built a database to collect medical information about
patients. I almost bent over backwards to make it a multi-table application
because I knew that this was what ‘professional’ database designers did.
Luckily, common sense eventually prevailed and I built it with one table
because that was all it needed.

Increasing complexity – most data isn’t that
simple

But, even though some applications do only need one table, life often isn’t that
simple. Databases almost invariably model some activity that’s taking place in

244

the real world with all its exceptions, variations and repetitions. Even the
smallest of businesses run from the spare room or garage has customers, orders,
price lists and suppliers of raw materials or components. A database to model
something like that turns out to be much more efficient if each of the different
object types (customers, suppliers etc.) is put into a separate table; i.e. all of the
customers in one table, all of the suppliers in another and so on.

The whys and wherefores that make this so are covered in Part IV. Hopefully,
in Parts I to III we have given you a firm grounding in how to use the basic
components of Access – tables, queries, forms and reports. If you’ve worked
through that, you are now in an excellent position to understand both why we
need to use multiple tables and how to use them effectively.

So let’s get started.

245

13 Where are we now?

Part IV

More complex databases

Chapter 14

Multiple table databases

More is better!

The natural progression from a single table database is to a multiple table data-
base. At its most basic, this means that instead of one base table containing all
the data, the data is split between a number of base tables. How many tables
you need depends on what you are doing: a database for a small business might
have three or four tables, Northwind, the sample database that Microsoft
supplies with Access, contains eight and a big financial application may well
have hundreds.

Using multiple tables to store your data

Using multiple tables to store your data has several advantages. These are best
illustrated not by us telling you to do it, but by showing you the problems that
arise when a single table is used to hold data that’s more complex than it has
been in our previous examples. The idea behind this approach is simple –
motivation.

Using multiple tables is obviously more complex than using a single one and
you are going to have to put effort into finding out how the multiple tables can
be induced to work together. However, if we can convince you that the gain far
outweighs the initial pain (and it does) then we hope that you’ll embrace the
idea of multiple tables with open arms.

So here’s a brief motivational diversion.

249

Imagine a microbrewery selling several different beers by the bottle. The data-
base needs to store each order and the fields required might be these:

You may also want to store the name of the staff member who made the sale.
And since there is only one table in the database, you’ll have to include any
other information that you want to store about that person (such as date of
birth, date of employment and home address) in the same table. So we need to
add these fields:

Each record in the resulting table might look like this, though we’re not
showing all the fields as there’s not enough room on the page.

Problem 1: redundant data
In the table above, there are many occasions where the same information
appears in many records; the addresses of the sales people, for example. This
repeated data is also known as ‘redundant data’.

So what’s wrong with a bit of redundant data? Well, as the table grows (with
increasing orders) the burden of redundant data can become huge. It takes up
space, it makes the table large and unwieldy and has the effect of making
queries run slowly. And you will get very bored entering the same data over
and over and over again.

250

14 Multiple table databases

OrderID OrderDate Item Quantity Price and several more for

the customer’s name

and address

EmployeeID LastName FirstName DateOfBirth DateOfEmployment and more for

the employee’s

address

OrderID Customer Item Quantity Price EmpID LastName FirstName DOB

1 Carr Druid’s

Dream

6 $4.65 7 Johnston Hannah 03/05/72

2 Jones Adder Ale 1 $5.50 8 Murray Bert 12/10/58

3 Smith Adder Ale 2 $5.50 7 Johnston Hannah 03/05/72

4 Jones Lambswool 1 $5.50 2 Trudeau Simone 23/08/68

5 Carr Adder Ale 2 $5.50 2 Trudeau Simone 23/08/68

6 Thomas Druid’s

Dream

12 $4.65 7 Johnston Hannah 03/05/72

7 Forbes Druid’s

Dream

6 $4.65 8 Murray Bert 12/10/58

8 Smith Adder Ale 4 $5.50 8 Murray Bert 12/10/58

Problem 2: typographical errors
Human beings are only human and entering data can be a rather boring task,
especially if each order is often largely a repeat of the previous one. The oppor-
tunities for error are many: before long, records will appear in which Hannah’s
name is spelled Hanna, where Bert was born in 1928 and Druid’s Dram is
offered for sale (an appropriate enough name but incorrect nevertheless).

These errors start to do serious damage when queries are used to extract infor-
mation. Hannah is unlikely to be pleased if she’s paid on commission and isn’t
credited with sales accredited to Hanna. Someone might decide to retire the
octogenarian on the staff and the business plan might be put in jeopardy
because sales of Druid’s Dream aren’t going as well as usual.

Problem 3: updating records
Simone gets married and decides that she will change her last name to that of her
husband. It’s a lot of work to find all the records of her sales and edit each one.

Problem 4: modifying records
If the record for order number four is deleted, all reference to the Lambswool
brew is lost because its name and price are stored nowhere else in the table.
Furthermore, a new brew called Hector’s Nectar comes on line. There’s
nowhere for its name and price to be stored, so you must wait until an order is
taken before it can be entered and if you wanted to generate a price list of all
brews to include the new variety, you couldn’t.

These are some of the problems that arise in single table databases when the
complexity of the data increases. In fact, there are more, and poor beleaguered
students on database courses get a much longer list. The good news is that all
are addressed by designing a multi-table database. True, you can probably
think of alternative individual cures – the last name change could be imple-
mented with an update query, for instance, and an incomplete dummy record
could inhabit the table until the first order for the new brew is taken. However,
experience has shown that a multi-table solution is the most comprehensive
treatment for all these woes.

OK, enough motivation, how do we do it?

Deciding what data goes into which table

As was said in the last chapter, a database frequently models an activity that’s
taking place in the real world. In these activities, objects can usually be identi-
fied readily. These aren’t objects in any special mathematical sense, just
elements that can be combined to define the activity.

251

14 Multiple table databases

In the microbrewery example above, a customer is an object, as are a member of
staff, a brew and an order. It is also clear that objects fall into groups that are
likely to have similar information stored about them. For example, a customer is
one object, another customer is a different object, and an order is a third object.
However, the type of information that we want to store about the customers
differs from the information that we want to store about the order. We can
group similar objects into object types and it is a good rule of thumb that the
information about each object type should be stored in a separate table. So here
we might have four tables called Customer, Staff, Product and Order.

To illustrate the mechanics of dividing a single table of data into multiple tables
of data, we’ll start from a slightly simpler version of the microbrewery table
shown above. The table, called BrewSales, is in the chap14start.mdb file
and looks like this:

� This is, as you’ll have noticed, a very small table because we’ve removed most of the detail
and the reference to employees. It is, however, large enough to illustrate the concepts be-
hind dividing data between tables.

252

14 Multiple table databases

�

OrderID Customer Item Quantity Price

1 Carr Druid’s Dream 6 $4.65

2 Jones Adder Ale 1 $5.50

3 Smith Adder Ale 2 $5.50

4 Jones Lambswool 1 $5.50

5 Carr Adder Ale 2 $5.50

6 Thomas Druid’s Dream 12 $4.65

7 Forbes Druid’s Dream 6 $4.65

8 Smith Adder Ale 4 $5.50

First we decide to split out the customer information and put it in a Customer
table, adding an ID field of the AutoNumber type to ensure that each entry is
unique.
CUSTOMER

� In a real example, you’re likely to have additional fields for address, contact details and so
on.

Then we decide to split out all the product information and put it into a Prod-
uct table, again adding an AutoNumber ID field.
PRODUCT

This leaves us with a mere two fields, OrderID and Quantity, for the Order
table. On their own, these two don’t tell us what was bought or who bought it,
so two fields must be added to access that information in the newly formed
Customer and Product tables. These are CustomerID and ProductID.
ORDER

253

14 Multiple table databases

CustomerID Customer

1 Carr

2 Jones

3 Smith

4 Thomas

5 Forbes

ProductID Item Price

1 Adder Ale $5.50

2 Druid’s Dream $4.65

3 Lambswool $5.50

OrderID Quantity CustomerID ProductID

1 6 1 2

2 1 2 1

3 2 3 1

4 1 2 3

5 2 1 1

6 12 4 2

7 6 5 2

8 4 3 1

�

The first record in this table tells us that customer 1 bought six of product 2;
looking back at the Customer and Product tables reveals that customer 1 is Carr
and that product 2 is Druid’s Dream.

OK, so now customer and product details are only stored once each, which is
good, but we’re left to deal with an unfriendly number-filled Order table,
which is bad. Fear not, when the completed database is in use you’ll rarely, if
ever, see the table looking like this. Using queries and forms, Access can present
the data in a helpful format so you can see at a glance

that customer Jones has bought Lambswool and Adder Ale and that Thomas
has only tried Druid’s Dream. The WhoBoughtWhat query above shows who
bought which products, a typical example of the appearance your data would
have in use.

In the chap14manualsplit.mdb, you’ll find the data from the original
BrewSales table split into three tables (Customer, Product and Order) as
described above and the WhoBoughtWhat query.

The subsequent chapters will look at designing a multi-table database from
scratch, but what can you do if you realize that the data in your current table
would benefit from being split into several tables? Do you really have to begin
all over again? Happily not. Access comes with a Table Analyzer wizard that
automates the process of splitting a single table into as many tables as it deems
necessary. It makes a reasonably good stab at the job too. It’s a worthwhile route
to try (with a backup of your database, of course) as it doesn’t take long and you

254

14 Multiple table databases

can make tweaks when following the wizard’s steps, as shown below. If you
don’t like the result, you can always go for a manual redesign.

Start by opening the chap14start2.mdb file, containing the familiar
BrewSales table.

Build a quick AutoForm based on the BrewSales table and call it
BrewSalesForm – this will be used later but, once built, can be forgotten for
the moment.

Using the Table Analyzer wizard

To run the Table Analyzer wizard, find the Analyze button in the main button
bar. It will probably be showing this icon.

If it is, click it, but if it isn’t, click the slim button with an arrowhead to its right
and pick Analyze Table.

The first two steps describe, as in the paragraphs above, the potential problems
with single table solutions and the potential benefits of using multiple tables.
You don’t have to do anything except read, looking at the examples if you wish,
and click Next to proceed. In the third step, select the table you require
analyzed.

� Also on the third screen you can decide whether you want to see the introductory screens
next time you run the Analyzer.

255

14 Multiple table databases

�

Here we’re using BrewSales so highlight it and click Next. Now you decide
whether to give the wizard its head or whether to divide the table yourself. The
wizard’s decision is not final, so let’s see what it produces by accepting the
default ‘Yes, let the wizard decide’. Click Next.

The wizard has divided the table into three. Table 2 contains the customer
records and Table 3 contains the product details. Both tables have acquired a
Generated Unique ID field. Table 1 retains the order details and has gained
some new Lookup fields: these are what will enable Access to locate all the
elements of a single order now that the fields are located in different tables.

� It’s worth noting that you need a certain amount of data to enable to wizard to function
properly. If theBrewSales table is shrunk to just the first seven records, the wizard de-
cides that it doesn’t have enough sample data upon which to work.

It is apparent that the wizard agrees with our theoretical identification of
objects performed above and our answer to the question at the top of the page
(‘Is the wizard grouping information correctly?’) is therefore yes, so we’ll
proceed to the second question. With the focus on Table1, click the rename
button

256

14 Multiple table databases

�

to the right of the question, type Order in the box and click OK. Repeat this for
the other two tables, choosing names to reflect the table contents, like
Customer and Product.

Click Next to continue: this step asks you to confirm the wizard’s identification
of primary key fields. These are the Generated Unique ID fields it added to the
Customer and Product tables. The Order table doesn’t have a primary key,
however, so highlight the OrderID field and click this button.

If there wasn’t an obvious candidate for a primary key field, one can be gener-
ated by clicking this button.

The three tables now all have meaningful names and primary keys.

257

14 Multiple table databases

Click Next. The default in the last page is for the wizard to create a query to
display your records just as they were in the original single table: this is a useful
starting point so select the ‘Yes, create the query’ option. If the check box at the
bottom of this step remains selected, Help will open automatically when the
query is displayed. For simplicity’s sake, I’ve unchecked it. Click Finish

and this is the resulting answer table, called BrewSales, with a last helpful
note from the Analyzer to explain that it’s showing you a query that simulates
the original single table.

Well, it doesn’t look quite like the original; indeed there’s a lot more going on in
here. You can see that Access is able to pull together records from different
tables to build a full record showing all that the original table held, with some
extra Lookup fields. It may not be instantly apparent what good these fields are
doing: they just seem to be repeating data shown in other fields.

Take a quick look at what’s in the Tables tab – this isn’t avoiding the issue, it’s a
digression that will, hopefully, make things clearer in a moment.

258

14 Multiple table databases

The three new tables are there (Order, Product andCustomer) plus the orig-
inal table upon which the Analyzer was run, renamed as BrewSales_OLD.
Now look at the Forms tab: there’s the BrewSalesForm which was based on
the original BrewSales table. Now that there’s no table called BrewSales
(because it’s been renamed), can we expect the form to work properly? Try it
and see.

Wonder of wonders, there it is looking perfect. How does Access work this
magic?

When you created that form it was based on the table called BrewSales, so
when you open the form, it looks for a table called BrewSales and pulls the
data from there. Or, to be slightly more accurate, it doesn’t look for a table called
BrewSales, it looks for a table or query called BrewSales. Then the Analyzer
renamed the table and created a query with the original name: Analyzer’s last
on-screen message announced this fact, and it’s there under the Queries tab. So
now when you fire up the form, it finds a query with the expected name and is
quite happy to pull data from that.

� One consequence of the fact that a form can pull data from a table and/or a query is that,
just as Access won’t let you create two tables with the same name, you can’t have a table
and a query with identical names.

You can create a new AutoForm based on this query which should look like this
one, called BrewSalesForm2.

259

14 Multiple table databases

�

If you click on the arrowhead in the Lookup to Customer and Lookup to
Product fields, you’ll see ready-made combo boxes from which you can make
selections. These are ideal on a form for entering new records. A quick flip into
Design view to delete the Customer, Item and Price fields that show details
that are duplicated by the lookup fields, followed by a little tweaking, leaves
you with a lean, mean data-entry form.

The file chap14wizardsplit.mdb contains the tables, query and forms
described above.

To illustrate the next two points, open the chap14start3.mdb file, which
contains tables called MoreComplex and BrewSalesTypo.

260

14 Multiple table databases

What if...

What if you don’t like the division of data that the wizard proposes? In the
example shown below, in which the Analyzer wizard has been let loose on the
table called MoreComplex,

the suggested configuration would still lead to multiple instances of customer
details in Table 1.

261

14 Multiple table databases

To subdivide Table 1 by relocating the customer records in a third table, click on
the Customer field and drag it to some free space: the cursor shows as a tiny
table. Release the mouse button and Table 3 appears containing the Customer
field and a Generated Unique ID field. This new field will ensure that each
customer has a unique ID number for accurate identification. Rename Table 3
in the dialog box that pops up. Now the CustLocation field can be dragged
across into the new table.

Once you’re happy with your alterations (in this example, you might also
consider a fourth table for product details) rename the other tables as necessary
and continue as outlined above.

262

14 Multiple table databases

And what if?

What if the Analyzer wizard pops an extra step, not covered above, that looks
like this? Run the wizard against the BrewSalesTypo table, proceed as before
and you’ll see this step:

263

14 Multiple table databases

Here the wizard attempts to identify records with entries so similar that they
might be typos and it also tries to identify sensible corrections. In the
Customer column in this example there are three names. The first two are
correct (Forbes and Thomas) so pop down the list and select (Leave as is) in the
Correction column for them both.

264

14 Multiple table databases

The third entry, Joness, has been correctly identified as a mis-spelling of Jones,
with the correct spelling shown in the Correction column.

If the Correction column didn’t contain the correct spelling, you’d click to
pop down the list of possible corrections and select one, or tell the wizard to
leave it as it is.

If the wizard doesn’t spot any such typos, you won’t see this step.

As the MoreComplex and BrewSalesTypo tables are just examples of
tweaking the Analyzer’s division of your data, we don’t, for once, have a
chap14end.mdb.

The manual solution

If the Table Analyzer wizard doesn’t appeal, you can always split a table
manually.

� It’s not at all necessary for you to do this as a practical exercise as Chapter 16 contains a
full description of how to build a complete multi-table database. It’s just given in case you
were wondering how it could be achieved.

265

14 Multiple table databases

�

First, take a backup of the database. Then make a copy of the single table, taking
both the structure and the data, and rename it as one of the new tables, say,
Customer. Then delete the fields that do not contain customer information,
ensure there’s a primary key and save the table. Make another copy of the
single table, name it Product, organize its fields and primary key and save it.
Finally, make a third copy of the original table and create the Item table. Now
you can addOld to the name of the original table until you’re sure everything is
working well, whereupon you can delete it.

Bringing the data together again is described in the next chapter.

Summary

The bigger the database, the more important it is to design it from the outset
with a multi-table structure. Databases have a habit of growing and becoming
more complex. Often what happens is that users find a database application
easy to use and want it to do more and to store details of other aspects of the
business. As the complexity increases, it becomes more likely that you’ll
encounter the four problems outlined at the start of this chapter. The time and
effort spent in redesigning the contents of a single table into a series of tables
will almost invariably be less than that taken to work around the problems.

If the Table Analyzer doesn’t produce the results you hope for, designing from
scratch is the next step. Creating a database from the ground up also gives you a
much greater insight into the way a multi-table database works.

Once you’ve identified the various objects about which data is stored and
constructed tables to contain those objects, the next stage is to determine how
the tables should act together to form the whole database. No prize is offered
for guessing that this happens in Chapter 15.

266

14 Multiple table databases

Chapter 15

Tables – making multiple
tables work together

In Chapter 14 we tried to convince you that it was a good idea to split data up
into separate tables in the database. However, in order for a database that’s
constructed from multiple tables to work effectively, there has to be some
means of linking the data from the different tables so that, although it is located
in different tables, it can work together. In Access, and indeed in RDBMSs in
general, the associations between tables are called ‘joins’.

The data in the tables needs to be regulated somewhat more carefully in a
multi-table database and Access uses primary keys to do this. Primary keys
ensure that each record can be identified uniquely and this property is impor-
tant in defining the joins that are made between tables.

The primary keys and joins work together to enable Access to identify the
records from different tables that comprise a complete set of data.

OK, that was a brief outline of how a multi-table Access database is put
together, but it doesn’t tell you how all of this works. So here comes the detail.

267

Primary keys

Primary keys are, as we’ve said, a way of ensuring that each of the records
stored in a database can be identified uniquely. Even if Mr Smith does order
five red roses twice on the 14th of February (let’s not ask why), the database
should record two different events and ensure that we don’t confuse them.
Even if all of the other fields in the Order table carry the same value, the
primary key value (in this case found in the OrderNo field) enables us to differ-
entiate between the two events.

This table is relatively simple but primary keys assume even more importance
in a multi-table database.

Deciding on a primary key field

Every table should have a primary key. Access can automatically add a field if
you use the wizard to create a table, the additional field being of AutoNumber
type. As we have covered earlier, the values in AutoNumber fields are automat-
ically filled in for you with the values 1, 2, 3 and so on. This, of course, ensures a
unique value in each record. In Design view, you define the primary key field
yourself. So which field should you pick?

Primary keys ensure uniqueness so your choice should be a field that is unlikely
to contain duplicate entries. You’ll often find that something is already used to
identify objects uniquely, for instance, a National Insurance or Social Security
number. This makes an ideal primary key field in a personnel table. Products
are identified by a code or serial number, cars have unique license plates (or are
supposed to!) and so on.

If there isn’t an obvious candidate, you can add an AutoNumber field to
generate a unique ID number for each record.

268

15 Tables – making multiple tables work together

OrderNo Name Date Type Number

32 Smith 14th Feb Red Roses 5

33 Jones 14th Feb White Roses 6

34 Simons 14th Feb Red Roses 6

35 Smith 14th Feb Red Roses 5

Adding a primary key

When you’ve decided on all the fields in a table and have identified the field to
contain the primary key, the actual act of declaring the primary key field is
extremely simple. Click on the field name and then on the Primary Key button.

A tiny key symbol appears to the left of the field name, signifying that this is
now a primary key field.

It is common practice for the primary key field to be the first field in a table. This
is by no means obligatory, but our feeling is that it is a convention worth
following. To insert a field at the top of the list, click on the current top field, on
Insert from the main menu, select Rows and a new row is inserted.

You can remove the primary key field designation equally easily, by selecting
the field and clicking the Primary Key button again. Decisions about primary
keys are best made at the design stage before any data is entered into the table.
You can change things later but it’s not quite as easy.

Joins – and foreign keys

A join is created between two tables starting with a primary key field in one of
the tables. The field in the second table at the ‘other end’ of the join is called a
foreign key field. Which bring us to an interesting point. As the database
designer you explicitly tell Access which fields are the primary key fields. But
foreign keys only come into existence when joins are created between tables. In
a sense, the act of creating a join is the one that tells Access which field is the
foreign key. I don’t want all of this to sound too existentialist, I only mention it
because otherwise you may think you have missed a stage somewhere when
we run through this in practice.

In a single table database (where it’s still highly sensible to have a primary key
field to ensure the uniqueness of records) there will be no foreign key fields. But
that changes as soon as you start to use multiple tables.

269

15 Tables – making multiple tables work together

Identifying a foreign key field

To illustrate this, we’ll return to the three tables that were identified from the
original single microbrewery table. They look like this (with rather minimal
data, just to save paper):
PRODUCT

CUSTOMER

ORDER

� The key symbol shown above identifies the primary key fields. These are just shown in
this book, they don’t appear like this in Access.

The Order table tells you that customer 1 bought product 2. It is intuitively
obvious (he typed hopefully) that, using the other two tables, we can see that
customer 1 is Carr and that product 2 is Druid’s Dream.

So the CustomerID field in the Customer table should be joined to the field of
the same name in the Order table and the ProductID field in the Product
table should be joined to the ProductID field in the Order table.

The CustomerID field in the Customer table is a primary key field but in the
Order table it is going to be the foreign key field. And once you’ve made the
join, the CustomerID field in the Order tables becomes a foreign key. The
same is true for the ProductID field in the Order table: you have now identi-
fied the two fields that will be used as foreign key fields.

Armed with this knowledge, you’re in a position to make the joins.

270

15 Tables – making multiple tables work together

�

ProductID Item Price

1 Adder Ale 5.50

2 Druid’s Dream 4.65

3 Lambswool 5.50

CustomerID Customer

1 Carr

2 Jones

3 Smith

OrderID CustomerID ProductID Quantity

1 1 2 6

2 2 1 1

3 3 1 2

Joining tables

Joins must be made between fields of the same data type. A text string in one
table and a currency value in another doesn’t sound like a match made in
heaven: Access certainly doesn’t think so because it won’t allow you to form a
join between two fields unless they are of the same data type.

The only exception to this rule is when (as often happens) you use an
AutoNumber field as a primary key. In this case, the other end of the join (the
foreign key field) must be of the Number: Long Integer type. This, too, makes
sense on further inspection. When you use the AutoNumber type, you hand
over to Access the generation of a unique number for each record so it automat-
ically puts a number into the field. However, the numbers that Access inserts
are, in reality, simply long integer numbers so that’s the data type to use for the
foreign key.

Making joins between tables

To illustrate the joining process we’ll use the microbrewery Order, Product
and Customer tables that have become familiar, contained in the file
chap15start.mdb. This is still a very simple database with limitations for use
in the real world, the most restrictive of which is that a customer may only order
a single product per order, but it will suffice for demonstration purposes.

Click on the Relationships button in the main button bar:

271

15 Tables – making multiple tables work together

This opens the relationship window, a blank gray window, on top of which is
the Show Table window.

If you don’t see the Show Table window, click the Show Table button.

From the Tables tab, double click on each of the tables in the relationship to
place them in the relationship window (or highlight them and click Add).
We’re using Customer, Order and Product. Now close the Show Table
window.

272

15 Tables – making multiple tables work together

The three tables are now in place and you’re ready to make the first join. As
discussed above, theCustomerID field in theCustomer table is to be joined to
the CustomerID field in the Order table. Click on the CustomerID field in
the Customer table and (holding the mouse button down) drag it across to the
Order table: when the cursor reaches the Order table, it shows as a tiny field.
Release the mouse button when the cursor is over the CustomerID field. A
dialog box pops out, entitled Edit Relationships.

Reading down from the top of the box, Access identifies the fields and tables
with which you’re working. Then comes a check box labeled Enforce Referen-
tial Integrity with two further check boxes grayed out. This sounds rather like a
draconian edict issued by Big Brother but is, in fact, Access asking whether it
should work behind the scenes to ensure that duff data doesn’t sneak into your
database. It’s a Good Thing and you should check the box.

More questions arise as the grayed out boxes spring to life. Are Cascade Update
Related Fields and Cascade Delete Related Records also Good Things? Yes,
they can be amazingly useful, depending upon circumstances. However, when
you’re learning and experimenting it’s probably best to leave these two
unchecked for the moment. As your confidence in using Access and controlling

273

15 Tables – making multiple tables work together

your data grows, you can return and enable either one or both of them. But of
course, by writing that we have undoubtedly made you almost insanely keen to
know what they do. So...

� Cascade Update and Cascade Delete

These settings allow Access to automate the housekeeping tasks of updating or deleting
records that, in a multi-table database, are spread between many tables. For example,
suppose you set Cascade Delete on the join between a Customer table and an Order
table. If you then ever delete a customer’s record from the Customer table, Access
would automatically delete the records of every purchase that customer ever made. Gen-
erally speaking, this move won’t please your accountant, so Cascade Delete is inappro-
priate in this case. On the other hand, there are cases where Cascade Delete is appropriate
– in a database that’s storing provisional orders, for example.

Cascade Update enables you to change the primary key value for a customer even when
that customer has placed orders. Both of these options are reasonably powerful and need
to be treated with respect since they can wreak havoc when used incautiously. The flip
side of that is that they are really useful when used properly so regard them as friends.

At the bottom of the dialog it says Relationship Type: One-To-Many. Types of
relationship, of which one-to-many is one, are covered below. For the time
being, just accept the default and click the Create button.

In the relationships window you should see a line running between the two
fields to indicate the join is in place. There’s a tiny one alongside the Customer
table end of the line and a tiny infinity symbol (a figure of eight on its side) at
the Order end. These indicate the one (1) and many (∞) ends of the join. This is
reasonable since one customer can, and hopefully will, place many orders.

274

15 Tables – making multiple tables work together

�

Repeat this process to place a join between the ProductID field in the
Product table and the ProductID field in the Order table. Set the referential
integrity as before and the relationships window should show these joins.

� At this point, if you haven’t already, it might be worthwhile dragging the tables around
until they sit with the Order table in the middle and the joins shown without the com-
plication of crossing lines. When you’re working with several tables it’s very helpful to be
able to spread them out in a pattern that displays the joins clearly. The layout can be
saved when you close the Relationships window.

That’s it. It has taken us some time to describe this all, but in practice the process
is very easy to use and only takes a few seconds to set up.

How joins affect tables and forms

We’ll now take a brief look at the three tables to see what effect introducing
joins has had. The Order table looks just as it always did but the Customer
and Product tables have acquired an extra expand button to the left of each
record. The Customer table looks like this:

275

15 Tables – making multiple tables work together

�

When you click the expand button by the first record, a subtable pops out
showing the associated records from the Order table.

Access has automatically given tables at the ‘one’ end of a join expand buttons
to let you see records in the table at the ‘many’ end of the join.

If you build an AutoForm on the Customer table, this too will automatically
include a subform to view the data in the Order table.

Indexing

We said in Chapter 8 that fields can be indexed and that foreign key fields were
almost always worth indexing. We say it again here, even more forcefully: it is a
very good idea to index all foreign key fields in your database. The reason is
that when you run a query that uses data from more than one table, Access will
have to search through the data in one or more of the foreign key fields. If those
fields are indexed, the answer to the query will appear more rapidly. If you
have large tables of data, this can make a difference of an order of magnitude or
more.

276

15 Tables – making multiple tables work together

Join types

As a break from the practical work, we’ll use the rest of this chapter to describe
the different types of join that you can set up. If you are really keen to keep on
working, you may want to skip this for now and come back to it later. On the
other hand, we put it here because it seemed the most logical place for it, so if
you can bear it...

One-To-Many relationships

This is by far the most common of the three types of relationship between tables
(the other two are One-To-One and Many-To-Many).

� One-To-Many and its friends are also known as joins; in fact both terms are reasonably
commonly used.

A one-to-many relationship indicates that one record from one table may be
joined to one or more records in the second table. In our example, you’d hope
that your customers would place many orders and buy from you again and
again. Each purchase means a record in the Order table that’s joined to a single
customer record in the Customer table. It’s the same with orders for products:
each brew is likely to be ordered many times. The relationship between the
Product table and the Order table is also a one-to-many join.

� Given the business we’re discussing, perhaps we should call it a one-too-many join...

One-To-One relationships

These are rare but can be useful. This type of join ensures that a single record in
one table is always and only joined to a single record in the second table.

An example of its use would be if you had a table of contact details and that one
or two of those contacts went abroad for extended periods. You decide not to
store these temporary foreign addresses in the contacts table because most
people in the table don’t have a foreign address, so you put them in a separate
table. With a one-to-one join between this table and the contacts table, each
foreign address would be associated only and always with one contact.

277

15 Tables – making multiple tables work together

�

�

Many-To-Many relationships

Describing joins as many-to-many is almost a misnomer as they are constructed
with two one-to-many joins used in a specific way. A many-to-many join
means that many records from one table can be joined to many records in the
second table by making use of a third table as an intermediary.

In our example, a customer can buy many different products and each product
can be bought by many different customers. A many-to-many join between the
Customer and Product table can therefore be envisaged with the Order
table acting as the intermediate table. In the practical session above, we made
two one-to-many joins (one between Order and Customer and one between
Order andProduct). This, in effect, defines a many-to-many join between the
Customer and Product tables, using Order as the intermediate table.

Not all pairs of one-to-many joins form a many-to-many join, however. (It
couldn’t be that simple, could it?) The two one-to-many joins must have their
‘many’ ends in the same table, as does the relationship you’ve just built. Two
one-to-many joins like this

do not constitute a many-to-many join. They’re just two one-to-many joins
between Customer and Order (one customer can place many orders) and
OrderDetails and Order (one order can be for many items).

278

15 Tables – making multiple tables work together

� The additional table would mean that a customer could order more than one product at a
time. The Product table is still required and would be joined to OrderDetails like
this. This does produce a many-to-many join which is between the Order and Prod-
uct tables.

In thechap15twofieldPK.mdb file you’ll find four tables related in this way.

Two field primary keys

Incidentally, the OrderDetails table is an example of one in which it is useful
to use a primary key composed of two fields – in this case OrderID and
ProductID. This is because, in any one order, we would only expect any one
product to appear once. True, the person placing the order may want six of that
product, but that is recorded in the Quantity field.

To add a two field primary key to a table in Design mode you must highlight
both the fields before clicking the Primary Key button. A slight peculiarity in
the interface means that you cannot see the little key symbols for confirmation
that all is well until you move the focus off the two fields.

Editing joins

If your cursor slips and you inadvertently join the wrong fields or if you forget
to set referential integrity (in which case the 1 and ∞ symbols would not be
shown alongside the join line) it’s easy to edit the join.

Double click on a join line to bring up the Edit Relationship dialog to change the
fields or the referential integrity settings.

279

15 Tables – making multiple tables work together

�

Deleting joins

Click on the join you want to delete (it becomes fatter when you’ve selected it)
and press the Delete key. Access checks that you’re sure; when you answer Yes,
the join is removed.

Completing the manual solution

� As we said before, this is an optional exercise.

In order to put the joins described above in place in a hand-built version of the
microbrewery database, described towards the end of the last chapter, you’ll
need to add two fields to the Order table, called CustomerID and
ProductID. As these will be the foreign key ends of the joins, they should both
be of the Number: Long Integer type. Now you can put the joins in place and
create a multi-table database from a single table database.

Summary

In Chapter 14 we discussed the reasons why a multi-table database can be a
better tool than a single table database and illustrated how a table can be subdi-
vided. In this chapter you’ve learned how to join the new tables so that they can
be used together by Access to provide the same level of functionality as the old
single table. The joins are in place for inspection in the microbrewery database
in the chap15end.mdb file.

Next we’ll construct a complete example to bring together these elements into a
working database.

280

15 Tables – making multiple tables work together

�

Chapter 16

Tables – a complete
multi-table database

Data – divide and conquer

When you begin work on any new database project, it is best to start with
pencil, paper and a cup of coffee well away from the computer. This isn’t
simply to keep the coffee out of the keyboard, the real reason is because the
process is one that requires thought in a peaceful environment. In the light of
what you wish to extract from the finished database, consider what you need to
store in it. In fact, that last sentence contains an important point which is often
overlooked. When people start to design a database, they often ask the question
“What data do I want to store?” A much better question to ask is “What informa-
tion do I ultimately want to extract from the database?” Once you have
answered that one, you will be in a much better position to decide what infor-
mation you should store. It is also useful, as discussed in Chapter 14, to identify
the various objects that will form the basis of the tables and then to think about
how the objects are related.

In our next example, the data to be divided and conquered is for a catalog of
books. Four objects have been identified – the books themselves, their category
(fiction, humor, poetry etc.) the authors and the publishing houses. Starting
from scratch we’ll create a complete set of tables and joins in this chapter and
the following chapters will build on this database. Using the other three
elements of a database – queries, forms and reports – will be covered with refer-
ence to multiple tables.

Although our example database will again be compact, one of the joys of a
multi-table database is that it is very flexible. If you start selling books, you can
add a customer table and an order table, and to track which sales assistants are
selling which books, all you need add is a table of staff.

This example, however, will restrict itself to just four tables.

281

Building the tables

The definitions of each table are shown in the next four screen shots; they all
have an ID field of the AutoNumber type. If you need a quick refresher on
building tables in Design view, look back at Chapter 8.

First, here’s the Book table.

This is the Category table,

282

16 Tables – a complete multi-table database

the Author table

and the Publisher table.

283

16 Tables – a complete multi-table database

Adding primary keys

You’ll probably be able to see where we’re going with primary keys. In each ta-
ble, the AutoNumber ID field has been designated the primary key field. These
are:

BookID in the Book table
CategoryID in the Category table
AuthorID in the Author table
PublisherID in the Publisher table

� In reality you might choose to use a book’s ISBN (International Standard Book Number)
as its primary key, these being unique identifiers for almost all published material. They
aren’t quite universal but for a mainstream book catalog they’d do the job.

In Design view, highlight the field and click the Primary Key button to add
these primary keys.

Identifying foreign keys

In order to collate the record for a single book from the entries in all four tables,
the Book table needs fields to act as foreign keys to the ID fields in the Author,
Publisher and Category tables.

284

16 Tables – a complete multi-table database

�

To the Book table definition in the Design view, add three fields of the
Number: Long Integer type. It is common practice for these fields to bear the
same name as their AutoNumber counterparts. This is not obligatory but using
the same name does give a good indication of what the join is doing (for
instance, matching AuthorID records in one table with AuthorID records in
another).

Joining the tables

Open the relationships window by clicking the Relationships button and then
put the four tables in place.

Click on the AuthorID field in the Author table and drag it across to the
AuthorID field in the Book table and drop it. Ensure that the correct fields and
tables are identified in the Edit Relationship dialog, check the referential integ-
rity box and click Create.

Repeat these steps to make the joins between the CategoryID fields in Book
and Category and between the PublisherID fields in Book and
Publisher.

285

16 Tables – a complete multi-table database

The relationship window should look like this.

Objects

You may be wondering (worrying) about why we chose category as an ‘object’
worthy of a separate table. It is true that in this simple example we could have
replaced the Category table with a lookup field in the Books table, giving ac-
cess to a list of the relevant categories. In a real database there might be other
properties associated with the different categories – color, size, packaging etc.
We have included it here as a separate table simply to illustrate that objects, in
terms of tables at least, aren’t always physical objects.

Lookup fields – handle with care (if at all)

We introduced lookup fields in Chapter 8 and mentioned our reservations
about using them to create automatic references to data in other tables. On the
face of it, this may seem like a grumpy reaction to a relatively newly-arrived
feature in Access, but read on...

286

16 Tables – a complete multi-table database

When we look at the Book table, it does appear rather unfriendly.

Look at the last three columns: why must we see those nasty numerical values
from foreign key fields held in another table? Why not just use a nice cuddly
lookup field that can show us the actual data from that other table, not just a
numerical pointer? Using lookup fields, our table, now called Book2, could
look like this:

Not only are there proper names in the last three columns, but we also get those
handy pop down lists of name from the other tables. Looks good, doesn’t it?

You can tell we’re not convinced, can’t you? And this is why.

287

16 Tables – a complete multi-table database

Imagine you want to see all the science fiction titles in the database so you build
a query like this, which says ‘show me all the records where it says “science
fiction” in the Category column’. Fine, easy.

Except that it doesn’t run. (Chap16lookups.mdb contains the reviled Book2
table). Access reports a ‘Data type mismatch in criteria expression’. What Access
wants here is not the friendly text string ‘science fiction’ but the unfriendly
numerical value that, in the Category table, identifies the science fiction cate-
gory. It happens to be 5, so if you re-write the query like this:

288

16 Tables – a complete multi-table database

it works.

Those apparently friendly lookup fields aren’t quite as obliging as they seem.
We can see why if we look at the Book2 table in Design view. The data type for
lookup fields is Number (Long Integer) and that’s why any query that uses this
field will only recognise numbers and will choke on text strings.

There are other odd effects, such as that illustrated by this simple query to list all
titles and publishers, with the publishers in ascending order.

289

16 Tables – a complete multi-table database

In the answer table, however, the publishers appear to be listed in random
order:

Once again, it’s because of the numerical data that underlies the lookup table.
Inspecting the Publisher table shows that Frankfurters’ ID is 1, Activity
Book’s is 2 and so on, and this is the order into which the lookup field entries
have been sorted.

Furthermore, when we add lookup fields to our new book table, the wizard
shows us the following message:

290

16 Tables – a complete multi-table database

The lookup wizard is creating the joins between tables. Looking at those joins
with the Relationships window, we see that no referential integrity settings
have been put in place.

Referential integrity is, you’ll recall, Access’ behind-the-scenes way of keeping
your data tidy and free from errors. You can, of course, edit the joins to add
referential integrity but it’s a step that might be forgotten.

These are, in our opinion, good reasons why we should stick to the ‘classical’
primary key to foreign key joins between our tables and not be lured away by
the pretty face of lookup tables. Forms are equally good at hiding numerical
complexity and they’re considerably more flexible and have the potential to be
even prettier. It’s easier to write queries that work and they’re more likely to
return the answers you expect. Lastly, your data is safer from errors.

Summary

The basic structure of the book database is now complete; the tables have been
built and the joins are in place between them. All it lacks is some data. Being the

291

16 Tables – a complete multi-table database

amiable types we are, you’ll find a file called chap16end.mdb containing a
database of an identical structure to the one described in this chapter and,
what’s more, it contains data. When you look at the table view of this data,
you’ll see that expand buttons appear alongside records in the Category,
Publisher and Author tables, placed there automatically by Access.

292

16 Tables – a complete multi-table database

Chapter 17

Queries – finding data from
multiple tables

Check out the data

Take a few moments to look over the four tables in the Book database with data
(chap17start.mdb). Check out the Datasheet view of the Author table:
everything looks as you’d expect, including those useful expand buttons in the
first column. Click on one and, again as you’d expect, a subtable pops out
showing the related record or records from the Book table (to which the
Author table is joined). This is the first proof that the joins in the new database
are working: Access is using them to show you related records.

Having built a complete set of tables and allocated the data between them, you
now have various tables each of which holds only one aspect of the whole
catalog. For a human being interacting with the database, this could perhaps be
seen as less than ideal so a method is required to collate the data into a complete
record. This, as the chapter title implies, is done with queries.

Bringing it all back together

A query can be based on one table or on many and building multi-table queries
differs not very much from building single table queries. We’ll build one now
for showing complete records from the book catalog.

Multiple table queries

From the Queries tab in the database window, double click to build a new
query in Design view. From the Show Table dialog, select all four tables (click

293

on the first in the list, which should be highlighted and drag downwards to
select them all, and then click Add). In the Table/Query pane you’ll see the
tables are displayed with their joins represented as lines, just as they are in the
Relationship window. You can, if you wish, drag the tables into positions
where the joins can be seen clearly.

Turning to the Query Design pane, the quickest way to see all the fields is to
double click on the asterisk line in each table, a short cut to adding all the fields
in the table to the query. The result, however, isn’t ideal.

This shows part of the very wide answer table which contains several columns
of extraneous information such as the ones shown above labeled
Book.CategoryID and Category.CategoryID. These are displaying the
ID fields from the Book and Category tables which isn’t particularly helpful,
especially as further along the answer table is a column labeled Category
containing the type of book in plain English. The same happens with publisher
and author ID data.

� When Access needs to differentiate between fields of the same name from different tables,
it displays the field name preceded by the table name, the two names being separated with
a dot. The answer table above has fields labeled Book.CategoryID,
Book.AuthorID and Category.CategoryID, amongst others.

To build a more concise and user friendly answer table takes a little longer but is
well worth the effort. Close this query without saving it and start again in
Design mode, adding all four tables as before. This time select fields from each
table, leaving out every field that ends with ‘ID’.

294

17 Queries – finding data from multiple tables

�

The resulting answer table is still rather wide but its contents are a lot easier to
understand. You can see complete records without any of the ID numbers that
are primarily for use by Access rather than by users.

This query can also be created using the wizard: the choice of tools is up to you.
I’ve saved this query, calling it Everything.

The rest of this chapter goes into more detail about querying multiple tables,
different types of join, basing queries on other queries and so on. However, we
have already covered the most important lesson that you can learn about
querying multiple tables – which is that it is amazingly easy to do. And not only
that, the result is also amazing. In earlier chapters we have shown you how to
split the data up so that it is placed neatly in the separate tables. This query pulls
it together again with Access doing most of the work for you. It is automatically
matching all of the data in the primary and foreign keys; you don’t need to tell it
to do so explicitly once the joins are in place. With a trivial amount of work you
can pull the data that you need from the tables and see it is a way that is intu-
itively easy to understand.

As long as that message is clear, you have already understood most of what this
chapter has to offer. We think the rest of the chapter is worth reading (it
wouldn’t be here if we didn’t) but it is icing on the cake. However, icing is well
worth having so let’s look at that now.

The effect of joins on queries

The data that the query places in the answer table is selected on the basis of the
joins present between the base tables (Book, Author etc.). Now when you
create a join between two tables in the Relationship window, unless you specify
otherwise, that join is what is called an Inner join. When we showed you the
Relationship window (Chapter 15) we didn’t show you how to create any other
type of join apart from Inner because, as a good general rule, you don’t often
use any other type. Why? Because if you create an Inner join from the
Relationship window, you can always modify it at query time if need be. Of
course, now that we’ve said that, you want to know about the possible variants.
Fine, no problem.

Inner join

The queries we’ve demonstrated in the book thus far look for matching data in
the fields at either end of the join and, when a match is found, the record is
popped into the answer table. So, if the value in the primary key matches the

295

17 Queries – finding data from multiple tables

one on the foreign key, the data from the two records appears in the answer
table. Conversely, if there’s no matching data, there will be no record in the
answer table.

This ‘normal’ type of join is properly called an inner join and is the default join
type, always combining two or more tables on the basis of identical values
within joined fields. It works well and is extremely useful but there may be
occasions when you want something different.

Into the Category table you have entered all the likely classifications of book
in the catalog. Suppose that, having also entered some book records, you want
to see if there are any categories that are not represented by the current collec-
tion of books. If we use an inner join in the query, unallocated categories won’t
show up in the answer table from a query because, despite having a
CategoryID number in the Category table, they have no matching records
in the CategoryID field in the Book table. To produce the answer table you
want, what you need is an outer join.

Outer join

If you use an outer join between the tables, the answer table generated by a
query will let you see all the records in the table on one side of the join, even if
there is no match in the other table.

In fact, to be pedantic, there are two types of outer join, depending on which
records you wish to see in their entirety. The proper names for these flavors of
outer join are ‘left outer join’ and ‘right outer join’ (although people often leave
out the ‘outer’ part of the description and talk about left and right joins). The
terms ‘left’ and ‘right’ come from the syntax used in the SQL querying
language. The good news is that these translate very well into the Access query
builder which makes left and right joins delightfully simple to use. However,
this is probably getting far too theoretical and a demonstration should make it
all clearer.

296

17 Queries – finding data from multiple tables

Create a new query in Design view and add the tables Category and Book.
Select the fields Category.Category and Book.Title.

This is using the default join type, inner (which it is taking from the relationship
window), so when we run it we see all of the books, each with its category.

297

17 Queries – finding data from multiple tables

But we want to see which categories aren’t used. So go back to the query defini-
tion and double click on the line that joins the two tables. This dialog should
open up.

This shows the Join Properties of which there are three, all described in the dia-
log box in plain English.

1. The first is the default, the workhorse inner join. Hopefully, you will recog-
nize it from the description given above.

2. The second type explains that it will give all the records from the Category
table plus the matching ones from the Book table.

3. The third type is the reverse: all records from the Book table plus the match-
ing ones from the Category table.

To get the result described above (all the categories regardless of whether or not
the catalog contains books in each category) we want to use the type 2 join.

� A type 3 join, in this instance, would give the same answer as a type 1 join because every
record in the Book table has been allocated a category though, of course, it depends on
your data and won’t always be the case.

So, select the second option and click OK.

298

17 Queries – finding data from multiple tables

�

In the query window, the line depicting the join has changed subtly to include
an arrowhead at the Book end of the join.

Run the query and...

there are all the category records, most of them with associated book titles but
some of them without. Just from this portion of the answer table we can see that
there are no cookbooks, short stories or books in the DIY category. This query is
saved as AllCats.

Now we have demonstrated the left outer join and that is, theoretically, the end
of the demo but we can’t bear to leave it at that because you’re probably
wondering ‘But how do I get a list which shows just the categories that aren’t

299

17 Queries – finding data from multiple tables

used?’ This has nothing to do with left outer joins but it’s a good question and
we can answer it using information you already have about queries. All we
need to do is to add a condition to the query which says ‘Show me this same list,
but only include the records where the entry for the field Book.Title is null
(that is, where there isn’t a book title).’ This is easily achieved by adding an ‘is
null’ operator under Book.Title and deselecting the Show check box:

which produces:

As we said above, the right outer join (showing all books) is, in this instance, the
same as an inner join because all books have categories. However, as you start
to build more complex databases the distinction between left and right outer
joins can become useful. The important take-home message from this exercise
is that Access normally returns all records where the values in the primary and
foreign key match. On those occasions when you want to see values that don’t
have a match in the other key, you can use an outer join. This query is saved as
UnusedCats (which sounds rather sad to an animal lover, but never mind).

300

17 Queries – finding data from multiple tables

� There may come a time during your experimentation with joins and queries when you
produce an answer table with many more records than you expect. The reason, almost
certainly, is that the query has produced a Cartesian product. This grand name means
that there were no joins between the tables in your query definition and when asked to
perform a query based on unjoined tables, Access tries to help by working out all the pos-
sible permutations. Six records in one table and 16 in a second gives 96 records (6 × 16
= 96), most of them nonsense. This can become more serious with large tables. Given
10,000 records in each, the answer table will have 100,000,000 records.... The only thing
to do is to go back to the Relationship window, install some joins and rewrite the query.

Basing a query on a query

As mentioned in Chapter 9, queries can be based on other queries. This is often
an efficient approach, especially with multi-table queries which take a little
longer to set up than those based on single tables.

I already have the Everything query to hand so when I want to find out in
which countries authors are based and also in which country the publishers of
their books are located, I can base a new query on Everything. Below is
shown the new query, called Geography, which is based on that Everything
query and with the records sorted by author last name:

301

17 Queries – finding data from multiple tables

�

It’s a quick and easy way to generate the answer, so when you need a new
query, consider whether you have an existing one that can be pressed into
service like this.

Summary

Queries in multi-table databases are even more flexible than they are in single
table databases because you can ‘mix and match’ data from the various tables to
reach precisely the information you want. All the different types of queries
covered in Chapter 9 (range, update, crosstab and so on) are, of course, still
available to you.

A query can either take all the records that have matching records in the tables
to which they are joined or, using outer joins, you can insist that all records
from a specific table are included in the answer table. Queries can be based on
one table, all tables or a subset of tables and, by recycling an existing query as
the basis for another, you can work even more efficiently.

The queries described above are to be found in the chap17end.mdb file.

302

17 Queries – finding data from multiple tables

Chapter 18

Forms – your interface to
multiple tables

Forms and functions

So far you’ve only seen data from the Bookmulti-table database from the view-
point of query-generated answer tables. This is fine for development work by
people with an intimate understanding of the data but isn’t half so fine for
anyone expected to use the database simply as a tool. Users need to enter new
records, browse and update existing records and be able to do this while
looking at a pretty face.

Forms provide the pretty face and hide the excessively databaseish appearance of
tables of raw data from the squeamish. Forms also have several neat ways of
presenting data that can make life easy for users; chief among these is the subform.

Subforms

Consider the outer join query we built at the end of the last chapter. It shows
each category of books together with the books in each category. A form with a
subform is an ideal mechanism for displaying this information because it lets
you see the category record as well as the related book records. Furthermore,
the book records are presented in a way that makes it easy to browse through
them. We could expend hundreds of words explaining what a subform is, but
it’s easier to show you.

Creating a form with a subform

Let’s do this first with the Form wizard, working with the chap18start.mdb
file. Launch the wizard and in the first step, select the Category table and,

303

from that, choose the Category field. Switch to the Book table and choose the
Title field and then click the Next button. The second step looks like this:

The wizard has determined that a subform is likely to offer the best view of the
fields you’ve chosen and is asking whether you wish to view them by category
or by book. The default has the ‘by Category’ option selected and in the
preview panel to the right, you can see that the category will be shown at the
top of the form with the book titles listed in a subform. If you move the high-
light to ‘by Book’, you’ll see that the wizard thinks a single form would display
the records in their best light. However, we’re here to inspect subforms so
return to the ‘by Category’ selection and click Next.

304

18 Forms – your interface to multiple tables

Pick a layout for the book record subform from the options shown: the preview
shows that each of the options retains the category records in the same position
at the top of the main form, above the book record subform. I’ll go with
Datasheet and click Next.

Pick a style, in the final step give names to the form and subform (these are
AllCategories and BookSub) and click Finish.

This is the resulting form.

The category is shown at the top of the form and controls for moving through
the category records are at the bottom of the form. In the subform, book records
are shown, again with controls below.

You can base a form-with-a-subform like this on more than two tables, for
instance, a subform can display records from both the Book and the Category
tables with the form showing records from the Publisher table. The step
defining the subform looks like this:

305

18 Forms – your interface to multiple tables

and the resulting form/subform like this:

This form is called Publisher and the subform, BookCatSub.

� Choosing memorable names for forms and subforms is quite important because after only
a short period of experimentation, you can find the Forms tab bursting with forms. Re-
membering the relationships they have to each other can be tricky without hints from
their names.

You can move the order of fields in the subform by clicking on the header when the
cursor shows as a broad down arrow to select the whole column in the subform.
Now you can click and drag the selected column to a new location. The layout will
be saved whenever you close the Publisher form, an action which also closes the
BookCatSub subform.

Note that when you use the form, you can edit all of the fields, including those
in the subform. You can even add a Category but you can’t add a book: a little
thought tells you why.

� I hate books that say that, it always implies to me that the authors don’t understand it ei-
ther. So, the reason is that the subform isn’t showing all of the information necessary to
ensure that all of the records are complete. If Access let you add a book you would end up
with a strange incomplete record. And, in practice, deciding which records can be up-
dated/added is more taxing than it first appears for any RDBMS (Access included) so
they tend to err on the side of caution.

That’s really clever, but what happened?

This wizard is very powerful (clearly a member of some inner circle of magicians)
by which we mean that it makes a complex process really easy. To use the wizard
you don’t have to know how it works. On the other hand, you may be curious to
know how a form and its subform work together. So that’s what we are going to

306

18 Forms – your interface to multiple tables

�

�

explain in this section but feel free to skip it for now (or for ever) if you aren’t inter-
ested in the underlying mechanism.

If we take the first example, the wizard created two forms – AllCategories
and BookSub. If you open the form BookSub on its own, you’ll find that it’s a
fairly basic form that displays the Title field from the Book table as a
datasheet. Note that it shows all of the books, not those associated with any
particular category. So, when this form is used as a subform in the form called
AllCategories, something in AllCategories must be doing the clever
work.

So, open up the form AllCategories in Design mode and open up the prop-
erties window. Now click once on the subform so that it is highlighted with
handles around the edge and so that the properties window reads
Subform/Subreport: BookSub. (Aim to click at the very top edge of the subform,
above the ruler, when the cursor is showing as a white arrow.)

The Data tab of the property sheet shows how the two forms are linked. The
CategoryID field in the Book table (the Link Child Fields property) is being
used to select the records in the book table that match the CategoryID field in
the Category table (the Link Master Fields property).

307

18 Forms – your interface to multiple tables

Clicking on the Build button that appears when the cursor is on Link Child
Fields opens the Subform Field Linker which states the result of the current
settings:

You can look at the Link Master Fields settings in the same way.

� Since neither the property sheet nor the Subform Field Linker shows the table names as-
sociated with the CategoryID fields, you might wonder how I know which is the mas-
ter and which the child. The answer is that link child fields always come from the
subform.

OK, that’s the end of the mechanics.

Another form based on multiple tables

Subforms aren’t the only way of viewing data from multiple tables on one form.
Another method that’s very commonly used is to base a form on a query. The
query pulls together records from multiple tables (from two or up to as many as
there are in the database) and a form is then based upon that query.

If you base a form on the AllCats query, you can navigate through all the
records and see the title of each book and its category.

When you’re designing a form, the use to which it is to be put should be the
deciding factor. The subform gives more of an overview while the simple form
shown above lets the user concentrate on one record at a time.

308

18 Forms – your interface to multiple tables

�

More form controls

Now’s the time, as promised at the end of Chapter 11, to introduce the
remaining form controls. Returning to the subform theme, we’ll look at
creating these from the Design view rather than from the Form wizard.

Subform/Subreport control

This example is to show the author on the main form and details of the books
the author has written and their categories on the subform.

From the Form tab in the database window, click New, select Design View and
the Author table.

You should see a field list on the screen (as above) showing the fields in the
Author table; if you don’t, click the Field List button on the main button bar.
Click on the LastName field and drag it onto the Detail section.

After checking that the Control Wizards button at the top of the Toolbox is
selected, click on the Subform/Subreport button

in the Toolbox and drag to outline a rectangle on the Detail section. When you
release the mouse button, the SubForm wizard starts up and asks whether the
data for the subform is to come from existing tables and queries, or from an
existing form (a list of which is shown). The book records I want to see are in the
Book andCategory tables, so click the top option button and click Next. Select
the Book table and move the Title field into the Selected Fields list. Now
select the Category table and move the Category field across.

309

18 Forms – your interface to multiple tables

Click the Next button. Here you determine how the records in the main form
are linked to those in the subform; the default ‘Choose from a list’ option
displays two possible links.

For this example, the first choice sounds fine, selecting the records from the
Book table on the basis of the AuthorID field.

� If the wizard’s suggestions don’t suit, click the ‘Define my own’ option and set the fields
for the form and subform as appropriate. You may have to go back a step to add the fields
you need for linking purposes if these don’t already figure as fields to be displayed in the
subform.

Click Next and name the subform in the final step (TitleCategory), clicking
Finish thereafter. This is the Form view of the new form, called
WhoWroteWhat, with its subform after a little judicious rearranging:

With the browsing controls at the bottom of the form you can move between
author records and as you do so, the relevant book and category records are

310

18 Forms – your interface to multiple tables

�

shown in the subform. Further browse controls let you move through these
records too.

List Box control

List boxes are especially useful on forms used for entering new data where they
can eliminate misspelled words and inappropriate entries. The list box shows
the user a list of all the possible entries for a field; picking one will fill in the field
accurately. This is an example of how a list box on a form can look:

In many cases, the list that appears in the list box will be taken from an existing
table though it is possible to type in a list of entries when you create the list box
using the wizard.

The example below builds a form called AddNewBook for entering new book
records. It will use three list boxes for entering the category, author and
publisher for each new book. In each case, we want to ensure that details of the
author and publisher are already stored in the database and that the book falls
into an existing category.

From the Form tab in the database window, click New, select Design View and
the Book table. From the Field List add the BookID, Title, PubDate,
NoOfPages and Hardback? fields to the Detail section of the new form.

Now click on the List Box control in the Toolbox

and drag an outline for it on the form. The first step of the List Box wizard offers
three options for the location of the values to appear in the list. The top option
finds them in an existing table or query and is the default; it’s also the one we
want.

Click Next to choose the table or query containing values for the list; this list box
will let users select a book’s category so here it’s the Category table. Click Next
and add the Category field to the Selected Fields list and click Next.

311

18 Forms – your interface to multiple tables

Now add a sort order – it would be helpful to have categories displayed in
ascending alphabetical order – and click Next.

The next step lets you set column widths: make the column width ‘best fit’ by
double clicking on the right edge of the column. There is also an intriguing
check box which, of course, it’s impossible not to uncheck:

Unchecking it shows the CategoryID field which has, in fact, been added by
the wizard. You can see this if you go Back two steps to where you selected just
the Category field: it’s been joined by CategoryID.

Adding this field is a sensible action by the wizard because it is the
CategoryID field that is the basis for the link between the Book and Cate-
gory tables.

Click Next to return two steps and click to reselect the option to hide the key
column because, in the finished list box, you’ll want users to see the categories
in plain English, unencumbered by the ID number that exists primarily so that
Access can ensure data integrity.

312

18 Forms – your interface to multiple tables

Click Next. When a user chooses a category when entering a new record, this
information needs to be transferred into the right field in the Book table for
storage. Of the two options offered, the second one fits the bill. Select the
CategoryID field from the pop down list of fields (list boxes get everywhere!)
from the Book table

and click Next. Lastly, type in a label for the list box (something like ‘Select a
category:’ would be helpful to users) and click Finish.

This is the Form view of the new list box. If there are more values than will fit in
the space allocated to the list box in the Design view, slider bars are provided
automatically so you can scroll through the values.

Flip to Design view to resize the rectangle the list box inhabits and to move and
resize the label if necessary.

313

18 Forms – your interface to multiple tables

That’s really clever, but what happened?

Once again, you don’t have to read this section, but you can if you want to
know how the list box works.

In Design view, let’s look at some of the properties the wizard has set during
the creation of this list box. I’ve given it a Name property of CategoryList.
The Row Source Type indicates that the values for the list are taken from a table
or query and the Row Source identifies the fields used and how they’re
ordered.

What it shows you is:

SELECT [Category].[CategoryID], [Category].[Category]
FROM [Category] ORDER BY [Category];

This is simply a query expressed in formal database terminology and the query
finds the CategoryID and Category fields from the Category table, and or-
ders them by the Category entries.

The Column Count is two (the wizard added the CategoryID field after you’d
selected the Category field) but the Column Widths property shows that the
first column (CategoryID) has no width and is therefore hidden.

Column Heads is set to No: the column of categories doesn’t need a header as it
already has an explanatory label.

The Bound Column is shown to be column 1 (the first column), meaning that
theCategoryID column in the list box definition is bound to the field specified
in the Control Source property. In this case it’s the CategoryID field in the
Book table (you can tell it’s from the Book table by popping down the list of
fields in the Control Source field). When a category is selected from the list box,
its category ID number is stored in the CategoryID field in the Book table (i.e.
in the Control Source).

314

18 Forms – your interface to multiple tables

More list boxes

Now build another two list boxes to list the authors and the publishers. For the
author list, choose the first and last name fields, and store the value in the
AuthorID field in the Book table. For the publisher list, the value should be
stored in the PublisherID field in the Book table. Click the Save button and
give the new form a name like AddNewBook.

Your form should now look like this:

I’ve added a label to tell users what they can do from the form and now it’s
ready for testing.

� It’s not possible to test the form by adding a new record with just the category list box in
place because of the joins that exist between the tables. Access would quite rightly object
that there was no author and no publisher specified for the new book record and would
not allow you to store an incomplete record.

315

18 Forms – your interface to multiple tables

�

Click the new record button and start by typing in a title for the new book (it
gets an ID number automatically), a publication date, a number of pages and
check the box if it’s a hardback. Select a category by highlighting the one you
want from the category list,

and an author and publisher from the remaining lists. Click in the narrow
vertical pane to the left of the form and the tiny pencil graphic changes to an
arrowhead to indicate that the new record has been successfully saved. Close
the form and open the Everything query.

As you can see, the new book is in place with the category, author and publisher
details in full, put in place by simple selections from list boxes.

Here’s one final tip for users of list boxes: to reach an entry quickly, type its first
letter. Click anywhere in the category list, type an ‘s’ and the highlight zaps to
‘Science fiction’; press ‘s’ again to work through multiple entries beginning
with that letter.

316

18 Forms – your interface to multiple tables

Combo Box control

A combo box is very like a list box but it has different strengths. It too presents a
list from which values can be chosen but the list is not shown on the form until
you ask to see it. A combo box looks like this

and when you click the button, the list appears.

One advantage of combo boxes is that they take up less room on a form, so if a
form already has many controls on it, consider a combo box instead of a list box.
Combo and list boxes behave in the same way, letting users select a value from a
predefined list usually taken from a table or query, and storing it in the appro-
priate field. Combo boxes, however, will also allow values that do not appear in
the list to be typed in.

� The ‘combo’ in this control’s name comes from its behavior which combines that of a list
box (from which you can only select predefined values) and a text box (into which you can
type new values).

We’ll build a combo box on a form called AddNewPub that lets users add new
publisher details to the Publisher table and with it users can either pick a city
from the list or type in a new location.

317

18 Forms – your interface to multiple tables

�

The combo box will be based on a query rather than on a table so the first step is
to build a query that simply pulls out all the records from the City field in the
Publisher table. We can, at the same time, get the query to sort them in alpha-
betical order. This isn’t essential, but people generally like sorted lists of infor-
mation, so we might as well make life easy for them. The answer table looks like
this:

which isn’t ideal because London figures twice and the list we want for the
combo box shouldn’t contain duplicates. (Such a list can contain duplicates but
for efficient use values should appear once only). In Design view of the query,
click anywhere on the top pane background and click the Properties button
from the main button bar. In the list of Query Properties is a property called
Unique Values, presently set to No. Set this to Yes

and take another look at the Datasheet view. London no longer appears twice
in the list. Close this query, saving it as Cities.

318

18 Forms – your interface to multiple tables

In the Forms tab of the database window, click the New button, select Design
View and the Publisher table. Add all the fields from the field list except the
City field. Click the Combo Box button in the Toolbox

and drag an outline onto the form. In the first step of the Combo Box wizard,
choose the first option, that of looking up values for the list in a query or table.
Click Next and click the Queries option in the View panel to see your saved
queries.

Double click the Cities query (or highlight it and click Next). In the next three
steps, select the one and only field, sort the cities in ascending order and alter
the column width to suit. Then specify the City field as the field in which to
store the chosen value and lastly choose a label for the combo box.

319

18 Forms – your interface to multiple tables

Below is the Form view of the new control when entering a new publisher. A
click pops down the list or you can start typing a new entry in the text box. If
you start typing a value that already appears in the list, that value is popped
automatically into the text box. Typing a ‘d’ pops Denver into the box and high-
lights Denver in the list, ready for a click to accept it.

To add a city, just start typing. If you were adding Detroit, the highlight would
stay on Denver while you typed ‘D’ and ‘e’ but as soon as you type ‘t’, the text
box clears, leaving you to type ‘roit’ to add the new city. The next time you open
the AddNewPub form to add a new publisher, the query runs and generates a
list that includes the new value for Detroit.

� Note how carefully we phrased that. If, after adding Detroit and without closing the
form, you enter another new publisher and pop down the list, Detroit won’t appear. This
is because the query to find all of the cities runs when the form is opened, not every time
you use the combo box. This is not a bug, it’s a feature. No, really, it is a feature! Most of
the time people don’t add new items when using a combo box and if the query ran every
time the combo box was used, it would be slower. In fact, using the advanced features of
Access (the programming bit) it is possible to re-run the query when an item is added but
that falls outside the remit of this book. However, this is a good illustration of why Access
has a programming language.

Tab control

Tab controls are useful for organizing forms by grouping related controls. A tab
control looks like this:

320

18 Forms – your interface to multiple tables

�

To move between tabs you just click on the one you want, just as you do when
inspecting the various types of property in the property sheet. Tab controls are
invaluable on forms that need to hold large amounts of data. Indeed, it is quite
common to make the entire form a huge tab control so that all of the data that
the user sees is inside one tab or another. On the sort of form we are using here,
a tab control is probably excessive but it demonstrates the principle.

We’ll build a tab control into a variation of the AddNewBook form: start by
making a copy of this form and calling it AddNewBookTab by highlighting the
form in the database window, clicking the Copy and Paste buttons and typing
in the new name. Now open the new form in Design mode.

Click on the Tab Control button in the Toolbox

and drag an outline onto the form. A tab control with two pages is now in place.
First we’ll change the page labels. At present each shows an arbitrary page
number, the value of which will depend on how much experimentation you’ve
done in your database. Inspect the properties (click on the tab itself rather than
on the body of the tabbed page) and you’ll see that the page numbers appear as
the Name property by which Access identifies the page object internally: it’s
advisable to change this to something by which you can identify it yourself.
Now add a Caption property to appear on the tab; type what you want and, so
long as your tab control is wide enough, the tab will expand automatically to
fit. My first tab is for BookDetails and this will work as a Name and, with a
space, as a Caption.

321

18 Forms – your interface to multiple tables

Controls can be placed directly on each page of a tab control in the same way as
they can onto a form and existing controls can also be cut and pasted from the
form onto a tabbed page.

� Don’t try to drag and drop existing controls from the form onto a tab control page. If you
try it you’ll find that when you let go of them, they apparently disappear because they
have dropped, not onto the tabbed control page, but onto the form underneath. It is easier
to use cut and paste as described here.

Select the NoOfPages and Hardback? fields by rubber banding, cut the selec-
tion, click the tab itself rather than the body of the page (the property sheet
should be headed Page: BookDetails) and paste. Shuffle the fields around into
the required positions. Rename the second tab as PublisherDetails, add a
caption and move the PubDate and the Publisher list box controls onto it.

322

18 Forms – your interface to multiple tables

�

Flip into Form view and inspect the new control.

Back in Design view, you can add further pages by clicking with the right
mouse button on the tab control. From the list that pops out, select Insert Page
and that’s what happens.

� If the tab control isn’t wide enough to display all its pages, a navigation control is added
automatically.

From this menu you can also delete a page (make sure the focus is on the correct
page before you do this as there’s no dialog to confirm the deletion) and change
the order of the pages across the tab control. Select the Page Order option,

highlight the page to be moved and click the Move Up or Move Down buttons
accordingly.

With the Tab Order option on this menu you can change the tab order within
the current page of a tab control. To change the tab order of the tab control
itself, right click anywhere on the form and select Tab Order.

323

18 Forms – your interface to multiple tables

�

Giving the tab control and its pages meaningful entries for the Name property
pays dividends here: identifying Page18, Page19 and TabCtl4 can take some
brain-racking.

Summary

With a grasp of the extensive armory of controls for Access forms, you can
design and build forms for any purpose. Forms give users a helpful interface for
entering data and for displaying it, either all records or a subset determined by
an underlying query.

Try to think about a form from the users’ point of view; keep things simple but
don’t hesitate to add helpful labels and captions. Use lines and rectangles to
draw the eye towards groups of controls. Use the most appropriate control: a
check box for a filling in a Yes/No field is quicker than selecting from a list. Use
tab controls to give a logical flow to progress through the data entry process.
Use list and combo boxes to control data entry and improve the integrity of
your data.

The examples covered in this chapter all appear in chap18end.mdb.

324

18 Forms – your interface to multiple tables

Chapter 19

Reports – printing data from
multiple tables

Basing reports on queries

Queries and reports are very much joint partners in the production of summa-
rized information from your database. Each has an area of data handling where
it performs best and together they give a high degree of control over report
production. Queries are good at locating data that meets certain criteria.
Reports are good at sorting and summarizing data, and at adding totals, subto-
tals, percentages, averages and so on.

For instance, a query can easily show authors based in the US, the books they’ve
written and for which publishing houses, and while these can be sorted on the
author’s last name, it takes more than a glance to see which authors have had
books published by more than one publisher.

325

A report based on this query (both query and report are called
AuthorPublisher and are in the chap19start.mdb file) could display the
data looking like this:

The records are still sorted by the authors’ last name and by the publisher, but
each author appears only once and the publishers are listed thereafter. Now it’s
much easier to see that Grant and Guttman have both published books with
different publishers.

True, we’ve covered most of this information in Chapter 12 and there isn’t
much more to say here, so why this separate chapter? Well, one reason is
symmetry – all of the other main components get their own chapter in the
multi-table section. There is a danger that the reports will sulk if they don’t get
their own chapter. But fractionally more seriously we wanted to make the point
that once you start working with multi-table databases, queries become even
more important when you create a report. Almost all reports in multi-table
databases are based on queries which gather the relevant data together from
the separate tables.

That’s the main take-home message. However, just to stop this chapter looking
ridiculously short, we’ll show you one more feature of reports that we like.

326

19 Reports – printing data from multiple tables

Adding a watermark

To add a bit of a dash, you can simulate a watermark on your reports very
easily. In Design view, inspect the Form properties and set the Picture property
to the graphics file of your choice. The Build button lets you browse the various
folders where clip art or your personal artwork is stored.

Set the Picture Type property to either linked or embedded. An embedded
picture is stored in the database file; this is a good choice if the graphics file is on
your personal hard disk and may not be accessible to anyone else using your
database. So long as the graphics file is on your hard disk, you can use the
linked setting.

You can experiment with the Picture Size Mode, Picture Alignment and Picture
Tiling properties to get the effect you want. (Tiling only works with Clip and
Zoom Picture Size Mode settings).

The watermark looks best if a pale colored design is used: it interferes less with
the information displayed in the report.

327

19 Reports – printing data from multiple tables

This stylish bird design is incorporated into the report called
AuthorPublisherWatermark – another snappy name from your intrepid
writers – and is in the chap19end.mdb file.

Summary

Having now completed a third pass through the four main elements of a data-
base, you should have a clear picture of how Access can help you control the
data that’s stored in the database and also help you extract it in ways you find
helpful. In the next chapter, we’ll look at the database as a complete application.

328

19 Reports – printing data from multiple tables

Chapter 20

Producing a user interface for
your database

Not just a pretty face

Your database needs to present an attractive, unified user interface (UI) to the
world. This interface can ensure that users are able to perform the actions they
want with the minimum of effort. A good UI has an uncluttered layout with
informative labels and instructions to keep users on the right track. The paths
through the application should also be plainly sign-posted, with options for
retracing steps if a wrong choice is made and for exiting the application tidily.

All the tools you need to build a user interface to your database application are
to hand in Access. In the main, you’ll use the form controls introduced in Chap-
ters 11 and 18 to create a series of forms that guide users through the necessary
processes.

Design considerations

An entire book could be written about database UI design. However, the
following pointers may help.

The main message is to keep it simple, avoiding too much color, too many
different fonts, too many graphics and generally just too much on a single form.
All these elements can, of course, be used most successfully in moderation. If,
for instance, tasks divide straightforwardly between adding records and
searching existing records, then using a different colored background to the
forms dealing with the two types of task gives users an instant visual clue to
where they are in the application. This also tells us that consistency of design is
also important. If you have a button for performing a common task (closing the

329

application and/or closing Access, for instance) that you use on more than one
form, put the button in the same place on each form.

� When you have several forms that are largely similar, build one and make copies, editing
the copies as necessary for their different roles. This cuts down the workload and also en-
sures a degree of consistency.

Consider the wording on your forms carefully. Will your users understand the
terse instruction ‘add record’ or would ‘add a book entry’ be clearer?

The most common approach to designing a UI is to adopt a branching struc-
ture, starting with a main form from which a choice is made depending on the
task in hand. Such a form is known as a switchboard.

Switchboards

A switchboard for the book database might lead on to forms for adding new
records or searching for particular information.

330

20 Producing a user interface for your database

�

Clicking on the upper button could lead to an option group which lets the user
choose what sort of an entry to add.

The switchboard form is often set to open automatically as soon as the database
application is launched (which can be from a shortcut on the Windows
desktop), leaving the user in no doubt about how to get started.

Form control without programming

Controlling the paths users can take through the forms that comprise a UI can,
of course, be achieved by writing sections of Visual Basic code and attaching
them to controls on the forms. With the more complex database applications
this is usually how it is done. Happily you can get started without program-
ming by using a combination of two simple ideas: one is that a command
button can close the current form or open a new form and the second is that you
have complete control over the size of each form.

On the switchboard the user has a choice of command buttons. If, for instance,
the ‘add new entries’ button is clicked, a form opens from which new records
can be added. Its size and position are carefully set so that it completely covers
the switchboard form which remains open underneath (but cleverly concealed
from sight). When the user clicks the command button to return to the switch-
board, the current record-adding form closes and the switchboard form
becomes visible again.

331

20 Producing a user interface for your database

Thus, given buttons to open and close forms and with the judicious use of
sizing, a seamless interface can be constructed. It does, of course, have its limita-
tions. This method will work best with simple interfaces without branches at
many different levels but it has the benefits of being quick and easy to build.

Designing a user interface

The first tools you’ll need are good old fashioned pencil and paper. Think about
what the users will want to do and how best to guide them. Circles, arrows and
scribbled notes are a good way of organizing your thoughts and determining
the likely paths through the application and thereby deciding upon how the
interface will reflect this.

We’ve decided that our UI needs a switchboard and from the switchboard users
need access to two task areas – each of which has a form, one for adding new
records and one for searching existing records. Below these two forms are
further forms for undertaking specific operations. For ease of reference, we’ll
describe the switchboard form as being Level 1, the adding and inspecting
forms as Level 2 and the forms where entries are made or browsed as Level 3.

This diagrammatic representation shows the structure of the complete UI.

Once you start setting fingers to keyboard, it’s best to work backwards, first
building the Level 3 forms, then the Level 2 and finally the switchboard. Why
this is so should become apparent as we work through the example.

Building an interface

We’ll now take a gallop through the process of building this simple UI based on
the Books database. Many of the steps you’ll have seen before so we’ll skim
over much of the detail. In addition, we have part-built some of the forms for
you so that you can concentrate on the parts that are novel: start from the

332

20 Producing a user interface for your database

Switchboard

Add new records Inspect existing
records

add new
Book

add new
Author

add new
Category

add new
Publisher

by
Title

by
Author

by
Category

by
Publisher

chap20start.mdb file. We’ve also weeded out the forms that won’t be
needed in for the UI in order to reduce the clutter.

Level 3

Starting with Level 3 of the hierarchy in the UI diagram above, we’ve chosen
a form that we’ve already created in an earlier chapter: AddNewBook
from Chapter 18 is for adding a new book record to the database. We’ve
provided another form called InspectByCategory with its subform,
BookAuthorSub, which allows users to look for books by specific category.
The forms now look like this:

333

20 Producing a user interface for your database

You could also either create new forms or identify other ones you may have
already built during earlier sessions.

Both the forms shown above have a ‘Back’ button built with the Command
Button wizard which, when clicked, closes the current form.

In the hierarchy described, there are six further forms at this level but these two
should be enough to give you the idea.

Level 2

Below is the Design view of the part-built AddEntries form reached when the
user chooses, at the switchboard, to add a new record.

A small title banner with a graphic has been added and a larger label indicating
the form’s purpose. There are two command buttons, both built with the
wizard. The Close Access button makes use of the Quit Application action from
the Application category to do just what it says, and the Back button closes the
current form. Lastly, there’s an option group with a label.

334

20 Producing a user interface for your database

� Option groups, you’ll recall, usually contain check boxes, option or toggle buttons, not
command buttons. However, turning off the Control wizards in the Toolbox and putting
an option group on the form is a very quick way of placing a box and label on your form
which you’re then free to fill with command buttons. You can, of course, build exactly the
same look with the Rectangle tool and a Label, altering the format settings to get the same
etched appearance etc.

What we need to add now are the buttons to open the Level 3 forms.

We have already covered the construction of command buttons, so add one,
choosing the following options:

• Category – Form Operation
• Action – Open Form
• Form – AddNewBook
• Open the form and show all records
• Text – add a book entry
• Meaningful name – AddBook

� The wizard only lets you choose from existing forms which is why working from the bot-
tom up is such a good idea.

Great. The form should now look like this:

Save it and try it out. It works fine except when the AddNewBook form opens
up it’s showing all of the records, so the user will have to move to a new record

335

20 Producing a user interface for your database

�

�

before they can add one. Since this form now has one purpose in life (allowing
users to add new books) we should be able to customize it for this purpose.
Move to Design mode for this form, call up the properties for the entire form
(click on the square at the top left of the form) and set the Data Entry property
to Yes. This tells the form that it is to be used for data entry, so it won’t bother
showing any existing records.

Now the buttons and forms should work fine together. You can repeat the
whole exercise for the AddNewAuthor form – that’s in the file though we
haven’t included data entry forms for categories, though there is an
AddNewPub form created earlier that could be used as a starting point. By now
you’ll know how to build or adapt as necessary in order to complete the appli-
cation. The finished AddEntries form is shown below:

336

20 Producing a user interface for your database

The InspectEntries form is largely similar with options for getting to the
various browsing pages. Clearly you shouldn’t set the Data Entry property of
the InspectByCategory form to Yes. However, since this form is supposed
to be used for viewing information only, you might want to set its Allow Edits,
Allow Deletions and Allow Additions properties to No.

Level 1

Now let’s tackle the switchboard, which is just a specialized type of form so
start work in Design mode on the form called Switchboard. It has graphics,
labels and a Close button so it’s up to you to add the two command buttons to
give access to the two Level 2 forms.

Click the Command Button tool and drag a rectangle out onto the form. In the
wizard’s steps, make the following selections:

• Category – Form Operation
• Action – Open Form
• Form – AddEntries
• Text – add new entries
• Meaningful name – AddNewEntries

337

20 Producing a user interface for your database

Repeat these steps to create a second command button that opens the
InspectEntries form.

I’ve also set two Format properties for the form: Scroll Bars is set to Neither and
Navigation Buttons to No.

A seamless whole

Now you have to juggle with the form sizes so that the secondary forms, when
open, completely cover the switchboard. The form property Auto Center (on
the Format tab) is useful here as it ensures that a form always opens in the
center of the screen. Set this property to Yes for all the forms in the UI. Then
work your way through the various paths, dragging the forms to a size where
they cover the underlying form: basically, the forms get larger as you work
down the hierarchy.

� You may find that you apparently resize a form and save it, but when you re-open it, lo
and behold, it stubbornly returns to its original size. The trick is to open the form in de-
sign mode, and make sure that you resize the form itself (rather than alter the size of the
window in which it appears).

338

20 Producing a user interface for your database

�

If you want the switchboard to open automatically as soon as the book database
is started, click Tools, Startup in the main menu bar. In the Startup window
enter the name of the switchboard form (here it is Switchboard) under the
Display Form/Page heading.

If you don’t want to give users access to the database window, uncheck the
Display Database Window option.

Further tweaks possible here are to type in the Application Title which will then
appear on the top title bar that normally reads ‘Microsoft Access’. You can also
pick an icon for the application to appear instead of the Access key symbol in
the title bar, the task bar and when Alt-Tab is used.

A far from perfect UI

This user interface is a long way from perfect. All sorts of considerations haven’t
been explored:

• should you give users a button to click to save a record or can you rely on
them being sufficiently Access aware to know that if they close a form the
record will automatically be saved? Do they even need to worry about this?

• should you let users close Access or just close the database application?
• should users be forced to track back to the switchboard in order to exit?
• what about editing existing records?

The last point is an important one. At present there is no way for users to correct
an entry that’s incorrect. You may decide this doesn’t matter, or maybe you
don’t want users editing records anyway. Or maybe you’ll add a record editing
option to the switchboard and another thread to the hierarchy.

339

20 Producing a user interface for your database

Even when designing and building a simple UI there are many solutions, and it
can be a time-consuming process. Guinea pigs are useful for testing the inter-
face: what you think is obvious might only be so because of your high degree of
familiarity with the system. Tactful, truthful and objective guinea pigs are ideal:
failing those, grit your teeth and don’t take criticism too personally!

Summary

Using these wizard-built buttons and the technique of opening and closing
forms of carefully chosen dimensions, it’s possible to put together an attractive
and useable front-end to your database, tailored to the needs of your users. The
user interface described above, so far as it goes and with all its imperfections, is
in the chap20end.mdb file.

340

20 Producing a user interface for your database

Chapter 21

Data Access Pages

The story so far

We’ve been working with objects in the first four tabs in the database window:
Tables, Queries, Forms and Reports. This is because our main aim is to get you
to the stage where you can design and build databases, both in single table and
multi-table formats. We also hope that you have gained sufficient confidence to
continue to experiment and learn about databases, because there is a great deal
more to Access than the parts we’ve covered. This chapter and the next, there-
fore, are designed to give you just a taste of Access’ extras. In this chapter we’ll
look at Data Access Pages – the webby bits – and cover a handful of other topics
in the next.

Data Access Pages – do you even need them?

Access started life in the era of the stand-alone PC. In those days it was assumed
that a PC database application would be developed on a single machine and
would be used by one person at a time. That is the simplest type of database to
build and so that’s the kind of database we’ve been teaching you about.
However, over the years the networking of PCs has become ever more
common, we’ve seen the development of the internet and the web that we all
know and love. We have also seen the development of miniature internets
(called intranets) within companies. Increasingly, there is a requirement for
databases that can be used by multiple people at the same time.

Access has several mechanisms for allowing a database to be used by several
simultaneous users: one is to give shared access to a database over a network,
and an overview of this is given in the next chapter in a section called ‘Applica-
tion Development’.

341

A second mechanism is to use data access pages. A data access page is a type of
web page specifically designed to let you use an Access database through the
medium of a web browser. This might lead you to think “Oh, so this means that
I can build a data access page and really easily make data available from my
Access database across the web!” No, no, don’t even think about going there!
Why not? Because it’s tough to build a safe and secure interface between any
database and the big bad internet. The internet is a hostile environment where
hackers and viruses abound. Allowing a database to interact safely with the
internet is way beyond the scope of this book: it opens up a whole raft of tech-
nologies, protocols and security issues that we don’t cover.

Even within the relative safety of an intranet (protected from the outside world,
as it should be, by a firewall), there are still security implications. Data access
pages are designed to let other people see the data in your database. Once
access to your data is extended in any way like this, it is highly likely that two
conflicting goals will need to be balanced. On the one hand, people must be
given access to the data; on the other you may well need to protect the data
from unauthorized viewing and/or tampering.

As we’ll explain later, data access pages aren’t stored in the usual Access .MDB
file but as HTML files in one of several locations. This can be in the file system
on your own PC, in a folder shared over a network or on an HTTP server (also
known as a web server).

� HTML – HyperText Markup Language – the language used to create web pages. HTML
is often stored in files with the extension .HTM.

HTTP – HyperText Transport Protocol – defines the way in which web pages are
transmitted.

This means that Access itself cannot control the security of data access page
files. Microsoft recommends that you put in place security measures for the
.HTM files and their associated folders using the system security of the
computer on which they are stored. That should ensure that access to the pages
is controlled.

In addition, to help protect the data that the page displays, you can also make
use of the security features of Access itself or configure Microsoft Internet
Explorer security settings to prevent unauthorized access.

Potential problems don’t end here, unfortunately. Some page controls raise
security issues: Hyperlink, Image Hyperlink and Bound Span controls should
all be used with caution because they can offer a way for the malefactor to intro-
duce destructive or detrimental HTML into the controls. There are methods for

342

21 Data Access Pages

�

dealing with such loopholes but it’s all moving a long way from the intended
scope of this beginners’ book about building databases with Access.

We realize that we must sound as if we are trying to put you off using data
access pages, and we most certainly are not. However, it would seem irrespon-
sible not to alert you to the fact that as soon as you start to share data, you move
into security issues that fall outside the compass of this book.

Stopping here makes good sense... but it’s also
boring

The bottom line is that, for now, we’d only recommend you build data access
pages for use within a highly controlled environment – like a totally
stand-alone PC that doesn’t connect to the internet.

So, if there is no immediate commercial advantage for you in learning about
data access pages, why bother? Well, these things are fun to play with. You can
build an up-to-the-minute browser-style interface to your personal database on
your own computer without servers or security settings. It’s very cool.

Once you are familiar with data access pages, and the security issues, then is the
time to consider broadening the use of your new interface to a couple of
networked PCs on a home or, perhaps, small office intranet with trusted users.
However, we still very strongly recommend that you start on a stand-alone
computer that isn’t connected to the internet. Let’s be careful out there.

What’s a Data Access Page?

A Data Access Page, hereinafter called a page for short, is a type of web page
used to view data that’s stored in an Access or SQL Server database. Since this is
a book about Access, we’ll concentrate on the Access side. These pages are built
to be viewed using Internet Explorer (Microsoft’s web browser), and are stored
as HTML files with the extension .HTM .

� You’ll need to install Internet Explorer 5.01 Service Pack 2 or later in order to work with
Data Access Pages. The ‘Access’ in the name, incidentally, is the nothing to do with Ac-
cess the DBMS but is a description of what the pages do, which is to give access to data.

343

21 Data Access Pages

�

Pages can be thought of as acting rather like forms for the web. You can use a
page to view data or to enter it, and just as you can base a form on a query, you
can also base a page on a query. The page below is an example of the kind of
page that can easily be produced.

AutoPage

The best way to see what pages are all about is to build one and take a look at it,
so AutoPage seems like a good place to start, as does the chap21start.mdb.

� With previous chapters, you’ve been able to load up the chap*.mdb file, work through
the chapter content and save the file with whatever file name you choose. This approach is
not possible once you start developing pages. Access maintains the links between the
.MDB file, .HTM files and any other associated files, and this means that if you create
.HTM and other files from an .MDB file called chap21start that .MDB name is en-
coded as part of the links that make everything work. If you want to rename the .MDB, do
it before you start creating pages. It further simplifies things if you keep all the files in one
folder, so create a new one called WebTest and copy chap21start.mdb into it (re-
naming it if you wish) before starting work.

AutoPage is the speed demon of page building. Like AutoForm, it takes only a
few clicks to come up with a result, so start by selecting Pages in the database
window. Now click the New button, select AutoPage:Columnar and then pick
a table or query to base the page upon. We’ll use the ClubMembers table here.

344

21 Data Access Pages

�

Click OK, and after a few moments and a few windows appearing and disap-
pearing, your almost-instant page appears.

All but one of the fields are represented on this page, the only exclusion is the
Photo field because this type of field is not supported.

Close the page and you’re asked if you want to save it. Reply yes, and the
WebTest folder is suggested, and the name suggested for the page itself is that
of the underlying table. Both are reasonable suggestions so accept them by
clicking Save. (At this point Access might ask if you want to make this folder the
default location for data access pages: answering yes ensures they’ll all be kept
together). When you return to the database window, you’ll see an item under
Pages.

Depending upon the security settings on your version of Windows, you may
see a variety of extra dialog boxes as you work with pages.

345

21 Data Access Pages

When you look in the folder, you’ll find a file called ClubMembers.HTM and
also a folder called ClubMembers_files. This folder contains various files
required by Access and they’re placed here automatically: the little .GIF files
contain the graphical elements that describe the look of the page.

“OK”, you might be thinking, “so if the page is an HTML document in my data-
base folder, what’s the page shown under Pages in the database window?” It’s
actually a shortcut that points to the HTML file in the database folder: that file
contains the actual HTML code that encapsulates your page.

Management of files becomes rather more of an issue once you start developing
Data Access Pages. Pages are always stored outside the Access .MDB file and some
care must be taken that they are kept together and with their ancillary folders.
What’s more, you must remember them when you’re backing up your database,
because Access’ automatic backing up facility only backs up the .MDB file.

The record navigation toolbar

Re-open the ClubMembers page and it’s displayed in Page view. The record
navigation toolbar at the bottom of the page lets you move through the records
as usual, and tells you that there are 23 in total. There are also buttons for tasks
such as New (add new record), Save, Delete, Undo, Sort Ascending and
Descending, Filter buttons and Help.

346

21 Data Access Pages

Most of these you’ll know about but a quick recap of the Filter by Selection
button

and the Filter Toggle button might be in order.

Put the cursor in theCountry field for any record where it says USA. Now click
the Filter by Selection button and the page will now show a subset of records
(the toolbar indicates that there are twelve such records) where the country is
USA. To remove the filter, click the Filter Toggle button. Until you change the
data on which you want to filter, the toggle button will flip between showing all
records and just those identified by your filter.

To sort the records into last name order, put the cursor on that field in any
record and click the Sort Ascending button. (Unlike a form, any sort order
applied from a page like this will not be perpetuated when the page is
reopened, even if you save it).

From this page you can add data to an incomplete record (to save your change,
click the Save button), change existing data and also add a new record (click the
New button with its rather indistinct star).

If you edit a record and then close the page without saving the record, you’ll see
this message:

This means your changes won’t be reflected in the table until you click Cancel
and save the changes explicitly. Then you can close the page as normal.

347

21 Data Access Pages

Enhancing an AutoPage

As we’ve already noticed with automatic generations, the results are OK but
they’re certainly not great. They do, however, provide an excellent basis on
which to build, so switch into Design mode.

This is a somewhat different design environment from the usual one: apart
from the Toolbox and the property sheet, there’s an all-singing all-dancing
Field List. It can show all the fields in every table in the database, and also the
fields used in each of the queries. There’s a Web toolbar at the top of the screen
too, with buttons for Refresh and Start Page (what used to be known as the
home page, hence the little house icon). If you don’t see this bar, right click
anywhere on the background to the toolbars and select Web.

Let’s start by adding a heading as there’s a helpful label indicating how to do
this: click where indicated near the top of the page and type whatever you wish
as a title for the form.

348

21 Data Access Pages

One of the easiest and most dramatic things you can do to a form is to add a
theme. Click Format on the main menu bar and select Theme.

349

21 Data Access Pages

Here you can inspect the possible themes, experiment with Vivid Colors, and
finally make a selection. Save the page, flip into Page view and –

suddenly it looks more like a web page. Pop down the list alongside the View
button and select Web Page Preview. This opens Internet Explorer and displays
the page just at it will be seen on the web. It looks even better.

� After adding a theme, on rare occasions when I saved a page the theme was apparently
forgotten and the page reverted to a plain monochrome appearance. To fix this I simply
re-applied the theme as described above and all was well. It’s possible you won’t see this
behavior but happily, if you do, it doesn’t appear to cause lasting damage to the page.

Create another AutoPage based on the EuropeMembers query, giving it a title
and theme as before. We’ll use it in a moment.

Page Design view

Back in Design view, it’s worth spending some time investigating the various
components. Much of it will be familiar from your work with forms and

350

21 Data Access Pages

�

reports: the page is divided into various sections and each section has proper-
ties, as do the elements within sections, as does the page itself.

The window that contains the page is the Data Access Page window: to inspect
the Page properties, display the property sheet if it isn’t already visible. Click on
the title bar at the top of the window, or right click anywhere on the page and
select Page Properties.

Part way down the page is a gray bar labeled ‘Header:’. It indicates the top of
the data processing area: in this section you will find all the fields that are
bound to fields in the underlying table or query. Inspect its properties by
clicking anywhere on its background.

Below this comes a bar labeled Navigation, containing the record navigation
toolbar.

In the data processing section you can format the labels and text boxes much as
usual, resizing them and changing their appearance. Moving fields and their
labels is also easy. Click and drag a field and its label moves too; click and drag a
label and it moves independently of its field. The best technique is to position
the field exactly where you want it, resize it if necessary and then move the
label into position and resize it.

Very usefully, the Undo button lets you undo your work.

Resizing elements of a web page from the property sheets is somewhat
different too. Because the page can potentially be opened by browser software
on another machine, you have no control at all over the size of the window in
which the browser opens. Many measurements are expressed as pixels. The
screen shot below shows the page margins in pixels:

351

21 Data Access Pages

Increasing the MarginTop moves the whole content of the page downwards.
Similarly, increasing the Left property of the Header (on the Format tab) moves
the data processing section over to the right.

The Toolbox has a different range of controls, some of which are new. Two that
are of great interest are the Hyperlink and Image Hyperlink controls.

Hyperlink control

You can use a hyperlink control to put a control on your page which will, when
clicked, open another document or another page, or send an email.

Given a way of opening one page from another, you can build a basic web inter-
face. Check that the Wizards are turned on in the Toolbox, click on the
Hyperlink control

and drag out a rectangle on the page. The Insert Hyperlink dialog opens.

Select Page in this Database from the big buttons on the left, highlight the page
(we only have one other to work with, called EuropeMembers) and in the Text
to display box at the top, type what you want to read as the hyperlink control.
You can also add a hovering tip if you click the ScreenTip button.

352

21 Data Access Pages

Click OK and the hyperlink appears. Once the size of the control is altered to
better fit the text and with color added, the control looks like this in Page view.

To see it in action, go to Web Page Preview and click on it. The European
members page is displayed. To return to the ClubMembers page, you just click
Back.

We’ll whiz quickly through another use for a Hyperlink control before moving
on. Suppose you want to send an email to the membership secretary every time
a member takes out or upgrades to gold membership.

� An email application such as Microsoft Outlook must be installed for this to work.

Return to the Design view of the page and put another Hyperlink control onto
it. This time, click the E-mail Address button, type the text for display, the email
address and the subject, add a ScreenTip if you wish

353

21 Data Access Pages

�

and click OK. This is the (slightly tweaked) result in Web Page Preview with the
screen tip visible.

This is what you see when you click the hyperlink.

Outlook opens with an email at the ready, addressed and with a subject in
place. Just type and send...

Here we’ve hard-wired the membership secretary’s name into the interface
because it’s so easy to change it. On the Other tab in the property sheet for the
hyperlink is a property called Inner Text. This is where the string that appears
in the interface is held, and editing this is all it takes to change the text.

354

21 Data Access Pages

Image Hyperlink control

Instead of having hyperlinks on your page that are activated by clicking on text,
you can also have ones that work when you click on an image.

Click the Image Hyperlink control,

drag out a control on the page, navigate to an image of your choosing and select
it. The Insert Hyperlink dialog opens to let you determine what you’re linking
to the image. There is a query in the database called SanFrancisco, which
identifies members in that city. We’ll use this as the source of the data for the
page. We don’t have a page to display San Franciscan residents yet, but rather
than having to go back and build this before starting again, you can click the
Create New Page button. Here you can type a name for the new page.

355

21 Data Access Pages

Clicking OK opens up a blank page in Design view. Drag the fields from the
Field List: expand the list of Queries and then expand the SanFrancisco
query to see them.

Add whatever tweaks, themes and titles you wish before saving the page. You
could even decorate the page with the same image used for your image
hyperlink (with the Image control).

Save and close the page, and still in Design view, right click on the hyperlink
image and select Edit Hyperlink. Now click the Page in this Database button
and your newly-constructed page appears in the list of pages. Select it, add a
ScreenTip (these are useful with images because they give extra information)

356

21 Data Access Pages

and click OK. Save the page and check it out in Web Page Preview. This is the
ClubMembers page:

Clicking the bridge image opens the SanFranciscoResidents page:

Neat, that.

357

21 Data Access Pages

Bound Span control

This control provides another means of making text and memo fields from your
database visible on screen. The main benefit that might lead you to use bound
span controls is to improve the loading speed of your pages. For users of
Internet Explorer 5.01 with Service Pack 2 or later, bound span controls will
load faster than other controls and thus improve the performance of the page.

The data displayed in bound span controls cannot be edited so for data
browsing/inspection forms this is an additional benefit. Furthermore, the
control can be bound to a text or memo field that contains HTML code so you
can also control the way the data is displayed in this way.

To create a bound span that just simply displays a field, click the Bound Span
control.

Now click the City field in the Field List, keeping the mouse button depressed,
and drag it onto the page. Release the button when the pointer is where you
want the top left corner of the control to be. It looks just like a text box and label
but its property sheet tells you, on the Other tab, that it’s a Bound Span. (It’s
called City1 because we already have a City text box control).

Flip into Page view and you won’t be able to edit the contents of that field, and
neither can you in Web Page Preview.

358

21 Data Access Pages

The Page Wizard

All of the pages we’ve built so far have just one level of grouping: records are
displayed without any levels of sorting. Rather more sophisticated pages can be
built with the Page wizard.

Launch the wizard and select a table or query: we’re using the People query.
Include all its fields and in the second step, add a grouping level of City. Sort
records by Last Name, name the page and Finish. This is the resulting page in
Page view, a title having been added.

You can navigate though the fifteen cities with the navigation bar and, when
you find one of interest, click on the expand button alongside the City label.

Another level opens up, showing the first person in the alphabetically-sorted
list. A second navigation bar appears, for moving through the people associated
with the chosen city (there are three for London).

Using the People-City navigation bar to move to a different city collapses the
people group until you’re ready to expand it again.

359

21 Data Access Pages

Controlling access

Imagine that you’ve constructed the ClubMembers page so that intranet users
can inspect the membership database. Letting them look is all well and good,
but you probably don’t want them editing, adding or deleting records.

Open the page in Design view. You can inspect the properties of a group, rather
than of the section that contains them, by right clicking anywhere in the section
and selecting Group Level Properties. The property sheet has only one tab, All,
and the first three properties in the list are very interesting. AllowAdditions,
AllowDeletions and AllowEdits are presently all set to True but they can all be
set to False, thus preventing web users from altering the data in your database.
Flip back to Page view and you’ll see that the New, Save and Delete buttons are
all grayed out, and you should find that the cursor won’t appear in any of the
fields.

However, on some machines we found that in Page view neither the hyperlink
to European member details nor the image hyperlink to San Franciscans works,
though the email-sending hyperlink does. On other machines it was fine. Go to
the Web Page Preview, however, and these three all work perfectly, while
restricting the editing abilities as described above.

A few more controls

Here are three more controls: two are highly useful and time-saving and one is
for fun.

The Record Navigation control

puts a ready-made navigation bar onto a page: put it in position in a data
processing section and magically it just works, displaying the correct numbers
of records and ready to roll.

360

21 Data Access Pages

The Expand control

adds an expand/collapse button. Place it where you have a group level that can
be expanded, otherwise you’ll see an error message when you click it, saying in
effect that there’s nothing to expand or collapse.

The fun control is the Scrolling Text control.

Drag one out on a page and find its ControlSource property on the Data tab.
Pop down the list and choose City. In Page view, you’ll see the city from the
current record scrolling past.

361

21 Data Access Pages

Alternatively you can put a scrolling text control on the page and edit the
InnerText property from the Other tab. Type in some text to scroll: you can also,
of course, play with the control’s fonts and colors. Now across every record you
inspect a message is scrolled distractingly across the control – albeit not in the
screen shot.

You can also set the Direction property (Other tab) so the text moves from left to
right, or up or down, and experiment with the Behavior property or with Loop
for the number of times the text scrolls past. There’s a great deal of potential for
being irritating. Such distracting controls should be used with caution, though
they can be fun if not used to excess.

Summary

Work completed in this chapter is in the chap21end.mdb file. This file and all
the associated folders and .HTML files are in the WebTest folder in AccSamp:
as we’ve said, it makes file management easier if you keep all the elements that
make your pages work in one place.

362

21 Data Access Pages

In this chapter we work with Access, external files, a browser and email soft-
ware, all of which can exist on a machine in slightly different versions and be set
up in slightly different ways. We spotted such differences (documented in the
chapter) between two machines which we thought were set up identically.
While we can’t guarantee it will work, we supply the chap21end.mdb and its
associated files in the hope that it will do so in most cases.

To cover the full implications of publishing Data Access Pages on the web, even
on an intranet, is beyond the scope of this introductory book, not least because
approaches to addressing security issues partly depend upon the software you
are running and partly on the configuration of your network and hardware. All
problems are addressable, however, given further work.

The foregoing should not detract from the great job Access does of providing
the environment and tools for building data access pages. What we cover in this
chapter and elsewhere should be enough for you to experiment with pages and
to publish them across a home or small office network to a few trusted
colleagues.

363

21 Data Access Pages

Chapter 22

You mean there’s even more?

This chapter is designed to give you just a taste of the extra bits that we haven’t
yet covered. We’ll start with the two remaining tabs from the database window
that we have stalwartly managed to avoid so far.

Modules and macros
Access provides a host of ways to let you create databases without the need to
become a programmer. However, if you really take to Access and start to
develop more complex applications, there will doubtless come a point when
you want the database to work in a particular way and there simply isn’t a
wizard available to help you to automate the process.

Microsoft provides a fully-blown programming language called Visual Basic
(VB) as part of Access which can be used to make the product do anything –
dust the house, make tea, anything (OK, anything within reason). This is essen-
tially the same language that’s found in all of the Microsoft Office applications.

A module is simply a collection of pieces of code written in Visual Basic. These
code snippets can either be associated with a certain Access report or form, or
used throughout an Access application.

Access also allows you to create macros that can be used to automate processes
within Access. Macros have a great deal of appeal because they give you some
of the power of programming without actually having to program. A macro is
built up from predefined actions, each of which performs a particular opera-
tion. Building a macro is, in fact, a very similar process to that of constructing a
command button with the wizard, as covered in Chapter 11. The main differ-
ence is that you can choose from a larger number of actions to perform and that
you are no longer limited to a single action per command button.

Macros are commonly used to automate actions that are repeated frequently,
like running a report, printing it and closing it afterwards. A macro is often tied
to a button which, when clicked, causes the macro to perform its actions.

364

So if macros are so wonderful, why bother with VB? Well, macros are easier to
learn than VB but not as versatile; some of the more complex operations that
programmers perform with Access are impossible to perform from a macro. If
you are really keen to take database development further, my advice is to take
the plunge and learn Visual Basic.

Application development

Suppose that you build a database in Access for your department or company.
It starts life as a simple application that you and perhaps one other person use.
It sits on one machine so you take turns using the database. You both help to
develop it, you both know it like the back of your hand, you can both use it
effectively.

The database is so useful that it rapidly becomes important, not to say crucial, to
the running of the organization. This is good, but you are likely to hit several
distinct issues at about this time.

• What happens when untrained people start to use it?
• How do you let different people have different access to the database (per-

haps some of them should only have the ability to read, but not alter, the
data)?

• How do you allow between five and ten people to use the database at the
same time from different machines?

• Does it matter if the number of people goes up to, say, fifty?

What happens when untrained people start to use it?

They uncover all of the holes that you didn’t know were there. You know how
to use the database because you helped to design and build it. You instinctively
know that you have to add an author to the author table before trying to add a
book to the book table. It’s obvious – but not to someone who has never used a
database. So the users will need to be trained and the database may need some
further development work.

How do you let different people have different access to the database?

By making use of Access’ security features, designed for just this purpose.

Security is a broad subject with far-reaching consequences and in this book we
only scratch at the surface. If your databases need sophisticated protection, it’s
likely that it can be set up just as you wish.

365

22 You mean there’s even more?

The simplest form of security is to assign a password to the database applica-
tion: users must type in the password in order to access the database. This offers
no protection to the database components: your table designs, queries and so
on can still be altered by any user but only, of course, if that user has the pass-
word. For a home or small business database there are instances where this type
of protection will be adequate.

An alternative is to opt for user-level security which can be used to limit the
access users have to the components you have created. User-level security is
extremely flexible, letting you determine exactly who can do what. You can set
it up so that users cannot change the design of tables, that they have read-only
access to queries (so they can see what they do but not alter them) and even so
that they can’t access certain tables of sensitive data (salaries information, for
example) at all.

Anyone who uses the database is a user and has a name and a password. Each
user is allocated to one or more groups and is said to be a member of a group or
groups. Each group is given permissions that enable the users in the group to
perform certain tasks. Access provides predefined groups including Read-Only
Users, whose members can read all data but cannot alter it nor the design of any
database object, and Full Data Users, who can edit the data but not alter the
design of any database object.

In addition, there is a User-Level Security Wizard, accessed from the main
menu under Tools, Security. This advanced wizard with many steps takes a lot
of the sting out of a job that can be somewhat challenging.

366

22 You mean there’s even more?

This is a typical page from the wizard. Here you determine which of the prede-
fined groups you wish to use for the database. The groups have descriptive
names indicating the sort of tasks users can perform and text to the right
describes this in more detail.

When you set up a security system with this wizard, it produces a report
outlining the security that has been put in place. Print this out and keep it safe
as it contains information you’ll need if you ever need to recreate this particular
setup.

How do you allow between five and ten people to use the database
at the same time from different machines?

Let’s assume that all of the machines are networked and can all ‘see’ a common
disk somewhere on the network. Let’s further assume that all of the machines
have a copy of Access 2003. If you put the Access .MDB file on the common
shared disk then, if all is well, all of the users should be able to use the database
at the same time. Note that tiny phrase slipped in there ‘if all is well’. Sharing
databases is much easier than it used to be but it still often requires a reasonable
understanding of both networks and databases. However, the good news is
that, possibly with a bit of initial tweaking, Access is capable of allowing
multi-user access to data.

Does it matter if the number of people goes up to, say, fifty?

Yes. The Access .MDB format allows multiple copies of Access to use the same
database simultaneously. The mechanism that it uses to allow this is
sub-optimal when the number of users increases above about ten (the actual
number depends upon what those users are doing). “Ah ha”, you think,
“sub-optimal. That’s code for badly designed.” Not really. Access was designed
to be optimal when run as a stand-alone database engine and it was a sensible
decision because that’s the way it is normally used.

So, what do you do if you want lots of people to use the database? You upsize
your Access application to some database engine that is designed for large
numbers of simultaneous users. Such an engine might be Microsoft’s SQL
Server, or it could be IBM’s DB2 or Oracle’s Oracle. These database engines sit
not on the PC, but on the server with the data. They can handle not just fifty
simultaneous users, not just 500, not just 5,000... you get the picture. How you
upsize the application is another book but all of these companies now offer
wizards or the equivalent to help you upsize.

Which brings us neatly to project files.

367

22 You mean there’s even more?

Projects

Before describing an Access project, here’s a little background to help give a
context to the description.

At the core of Access lies what’s known as a database engine. Called the Jet
engine, it is software that keeps such things as referential integrity, validation at
the table level and joins between tables under control and it also performs
whatever searches and queries are required by the users.

When you create an Access application within its .MDB file, your creation is
optimized for use by the Jet engine. (Incidentally, isn’t it a great name? It
sounds like something from a Flash Gordon story, or at least from the archives
of the Jet Propulsion Laboratory).

Microsoft’s other RDBMS product, SQL Server, also has a database engine, but
that is a very different beast, heavily optimized for multiple users.

Microsoft had the clever idea of coming up with a third engine called the SQL
Server 2000 Desktop Engine. This one is exactly the same as the SQL Server
engine except that it will run on stand-alone PCs and is sub-optimal for more
than about ten users. “Ah ha”, you think again, “sub-optimal. That’s code for
badly designed.” No, it was a decision taken by Microsoft in cold blood to
actively and deliberately restrict this engine so that it doesn’t work well with
more than a few users. Why? Well, if you want to run with hundreds of users,
Microsoft wants to sell you SQL Server. However, Microsoft also wants to give
you a path to upsize easily from Access to SQL Server and therefore provides
the SQL Server Desktop Engine.

When you elect to create an Access project, Access stops using the Jet engine
and switches to the Desktop Engine or SQL Server. You continue to use Access
and it will apparently work in much the same way as before. You can use it to
create tables, queries, forms and so on. In terms of differences, when you start
work you’ll notice a new button on the database window for Database
Diagrams and that when you create a new table, Access offers you a different
set of data types. However, all of the work you do can later be updated to SQL
Server really easily because the Desktop Engine has a high degree of compati-
bility with SQL Server.

Project files have an .ADP extension instead of the usual .MDB extension.
Unlike an .MDB file, a Project file contains no tables of data, just forms, reports,
macros, modules and data access pages. The tables of data are looked after by
the Desktop Engine but when viewed from Access running on a client
machine, the tables are visible components just as they are in stand-alone
Access applications.

368

22 You mean there’s even more?

Object dependencies

Access 2003 offers a means of inspecting the object dependencies in your data-
base at any time. This is a great help for general maintenance and house-
keeping, especially after a bout of development work.

Imagine you’ve generated lots of queries and there are several that you think
aren’t being used but you’re not entirely sure. To work out manually whether
any forms or reports are based upon a query can be a slow process, but happily
there’s an alternative way.

Looking at Queries from the database window with all objects closed, highlight
a query and select View, Object Dependencies (or right click the query and
select Object Dependencies, or press Alt-V, N).

You may see this message when you ask to see Object Dependencies:

Answer Yes and the feature will be enabled by turning on the ‘Track name
AutoCorrect info’ setting. You can do this manually via Tools, Options and the
General tab.

369

22 You mean there’s even more?

Dependencies are displayed in a panel: here we are looking at the
AuthorPublisher query from the Books database:

370

22 You mean there’s even more?

The radio button at the top lets you choose between the objects depending on
the query and those that the query itself is dependent upon. Two reports
depend on the AuthorPublisher query, and

the query itself depends on three tables for its data.

The dependencies of tables, queries, forms and reports can be inspected,
though not those of macros, modules or data access pages.

File formats

The Access 2000 file format is used as the default file format in Access 2003, as
you may have noticed from the database window’s title bar as we’ve worked
through the book.

Databases in the Access 2000 format can be opened in Access 2003 and will
behave perfectly. You can develop the database further, making use of features
new to Access 2003. Should you wish to open the file from Access 2000, any
elements that rely on those new features will be ignored, but the database will
still run. Should you wish to open the file in Access 2002, most of these new
features will remain in working order.

371

22 You mean there’s even more?

Access gives you this flexibility because it is quite common for users on a
network to have different versions of Access installed and yet need to use the
same Access database.

Access 2003 also offers the Access 2002 – 2003 file format. A database in this
format can only be opened in Access 2002 or later. If you decide you want to
create a database in this format, click Tools, Options and select the Advanced
tab. Pop down the list of Default File Formats and pick Access 2002 – 2003.

Regardless of whether you choose the Access 2000 or the Access 2002 – 2003 file
format, your database file will be saved with the .MDB file extension.

Summary

There are other really interesting bits of Access but the areas in this chapter are
those we would examine if we had read this book and wanted to know what to
investigate next. We hope you enjoy using Access as much as we enjoy our
continuing involvement with it.

372

22 You mean there’s even more?

Index

A
Access, other DBMSs and 9
Action queries 121, 125

defined 125
address book 16, 34
age calculations 60
answer table 36

editing data in 147–8
field names 294
multi-table queries 294
queries and 155
queries based on 158

answer tables 22
Append queries 125, 131

example 131
application development 365–7
authors 6
AutoForm 57–8, 71, 99, 170

joined tables 276
PivotChart 185–90

Automatic error checking 202–3
AutoNumber 253, 268
AutoReport 71, 74

types of 73

B
backing up 76–7

C
calculations 61–7, 120
captions 109
Cartesian product 301
Cascade Delete 273–4
Cascade Update 273–4
Chart wizard 190–2, 233
closure 154–7
color 178

forms 162–4
Pivot tables 178

columns see fields

combo boxes 200–2
Unique Values 318

Command Button wizard 212
conventions and layout 10–11
coverage 5
Crosstab queries 137–8, 141, 143–4

example 138
Crosstab wizard 138, 140

D
data

accuracy 100, 109
changing with queries 125
deciding what tables to use 251–4
derivable 61
ensuring correctness 100
entering 32
grouping 236
looking up 95
navigating 20
nulls 117
redundant 61, 250
saving 33
searching for 22
summarizing 240
viewing 21

data access pages 341–63
AutoPage 344–6
bound span control 358
controlling access 360
definition 342, 343
designing 348–51
Expand control 361
file management 346
hyperlinks 352–7
images 355–7
Page Wizard 359
Record Navigation control 360
record navigation toolbar 346–7
Scrolling Text control 361

373

security and 342–3
sending email from 353
sorting records 347

data entry, controlling 100
data types 83–98

advantages of using 83
alphanumeric 87
AutoNumber 92–3
Byte 89, 114
choosing 83, 114
Currency 91, 107
Date/Time 91, 106
Decimal 90, 114
demonstration of 84
Double 90
field sizes 89
Hyperlink 94
Integer 90
list of 84
Long Integer 89–90, 114
Lookup wizard 95, 99
Memo 88
Number 83–4, 88
OLE Object 94, 219
Replication ID 90
selecting 85
Single 89–90
storage requirements 89
Text 83, 85–7, 97
Yes/No 93, 108, 207

data validation 194
database application 8
database desktop 26
database management system, defined 7
database window 17
Database wizard 15–24
databases

defined 7
example 281–92
hand-crafted 79
interacting with 56
maintaining 121
maintenance 125
multi-table 244, 249–66, 281–92
planning 281
simultaneous use of 367
single table 244
user interface 329–40

Datasheet view 19, 33
Date Arithmetic 91
dates 91

twentieth and twenty-first century 106
UK vs. US 107

dates of birth 60
DBMS see database management system
default values 109
definitions 7
delete queries 125–6

example 126–8
Design view 160
disk space 114

E
Expression Builder 111, 206, 241
error checking, automatic 202–3

F
Field List 160–1
field names

choosing 29
editing 29
length of 29

field properties see fields, properties
fields 19, 34

adding 32, 161
defining 27
deleting 32, 161
finding 50
moving 92, 161
naming 34, 86
properties 105–14, 117–19
tab order 162

file formats 371–2
filter by selection 68, 347
finding data 36–55
finding fields and records 50
fonts 165
foreign key 114, 269–70, 276

identifying 284
identifying field 270

form controls 195, 309–23
adding 196
bound 195, 204
Bound Object Frame 219–20
calculated 195
Calendar Control 215–18
Check Box 207–8
Combo Box 200–2, 317–20
Command Button 212–14
deleting 196
formatting 197
Image 214

374

Index

in use 197
label 199
Line and Rectangle 214
List Box 311–13, 315–16
moving 196
Option Button 207
Option Group 209–12, 335
selecting multiple controls 197
sizing 196
Subform/Subreport 309–11
Tab 320–4
Text Box 203–7
third party 215
Toggle Button 207
types of 195, 199–217
unbound 195, 203
Unbound Object Frame 220–2

form designer 60
Form view 163
Form wizard 15, 59, 62, 156, 303, 306

types of form 59
forms 20–1, 24, 56–68

based on answer tables 155
based on queries 156, 308
calculations in 62–7
controlling 331
controlling data entry 194–225
creating 57–9, 170–3
Design view 62
designing 159–69
ease of use 56
fonts 165–6
footers 169
formatting 162
functions of 56, 303
graphics 166–8
headers 169
including calculated values 60–1
multiple 68
multi-table databases 259, 303–24
naming 60, 306
navigation 21–2
properties 65
querying from 68
reasons for using 21
saving 58
types of 60
see also AutoForm; subforms

G
globally unique identifiers see GUIDs

graphics 166, 214, 219, 327
Group By queries 132–6

example 132
GUIDs 90, 256

H
hyperlinks 94–5, 99

I
indexes 113

disk space 113
joined tables 276
number of 113
options 113
primary keys and 113
speed and 113

input masks 5, 101–4, 115–16
displaying blanks 116
examples 102, 115–16
function of 101
separation characters 115
symbols used 102
wizard 104

intranets 341–2

J
Jet engine 368
joins 267, 269–71, 273–4, 285

AutoNumber fields 271
deleting 280
editing 279
effect on tables and forms 275
example 271, 275
inner 295–6
many-to-many 278
matching data types 271
one-to-many 274, 277
one-to-one 277
outer 296, 298–300

left 296, 299
right 296, 300

queries and 295–300
types of 277–8

L
Label wizard 231–3
labels 199

changing 67
properties 199

lines and rectangles 214
list boxes 311, 315

375

Index

long names 9
lookup fields 286–91
Lookup wizard 95, 99, 101

M
macros 364
mailing labels 231–2
Make-Table queries 53–5, 125
Microsoft Excel 221–2
Microsoft Graph 190, 192
modules 364

N
null values see nulls
nulls 49, 117–18

defined 117
purpose of 117

number of users 367
numbers 88

O
object dependencies 369–71
object types 18
objects 18, 64, 252

properties 65, 105
OLE 94, 100
operators 48, 110, 124

AND 148
Between...And 124
BETWEEN...AND 151
LIKE 149
list of 48
NOT 149
OR 148
queries and 148

Option Group Wizard 209

P
Parameter queries 122, 124

combined with Range queries 125
creating 123
defined 122
reports and forms and 122

passwords 366
pivot tables 170–1

AutoForm 174–4
views 183–4

PivotChart 185–90
PivotTable wizard 185
postal codes 104–5

UK 104

primary key 30, 32, 82, 92–3, 257
adding 269, 284
choosing 82, 268
defined 82
function of 82
indexes and 113
joining tables 267
multi-table databases 268
reason for using 82
removing 269
two fields 279
uniqueness 268

print to fit 71
printing 69–75, 325–8

problems 74
projects 368
properties 64

Allow Zero Length 118–19
caption 109
Default Value 109
defined 64
format 106, 108
Indexing 113
Required 113
Validation Rule 109, 112
Validation Text 112
viewing 65

Properties dialog 66
property sheet 65

Q
queries 21–4, 36–55, 120–58

answer table 36
asterisks in 42
based on answer tables 155
based on other queries 157
based on queries 301
basing forms and reports on 120
basing reports on 325–6
calculations 144–7
calculations in 120
case-insensitive 45
choosing records to display 44–52
creating 37, 39
defined 36
designing 44
extracting information from data 121
forms based on 308
highest and lowest values 152
including all fields 40
including subset of fields 42

376

Index

joins and 295–300
making tables with 53–5
multiple 51
multiple tables 293–302
naming 37, 42
reasons for using 36
refining 148–53
running 41
saving 36, 52
saving data with 53–5
selecting fields 40
simple 38–9
sorting results of 120
types of 121–43
using ‘and’ and ‘or’ 48
visible and invisible fields 41, 51
see also append queries; delete queries;
Make-Table queries; update queries

Query Design tool 38–43
Query wizard 37–8

R
range criteria 124
Range queries 124

combined with Parameter queries 125
creating 124
example 125

readership 3–4, 6
records 19, 34

adding 33
automatically deleting 274
automatically updating 274
deleting 126
editing 128
finding 50
modifying 251
posting 33
queries and 125
updating 251

referential integrity 273, 291
relational database management system,

defined 7
relationships see joins
replication 91
Report wizard 69–73, 157, 226–30
reports 23–4, 69–75

adding a watermark 327
based on queries 157, 235, 325–6
choosing fields 69
creating 69–73
customized 226–43

Design view 233
Detail band 233
field expressions 240
formatting 243
grouping data 236–40
labels 234
layout 70–1
multiple tables 325–8
naming 71
Page Footer 233
Page Header 233
Print Preview 233
printing 74
queries and 24
Report Footer 233
Report Header 233
sorting 70
summarizing data 240
text boxes 234
see also AutoReport

requirements 7
rows see records

S
sample files 8
security 365–7
security warning 16
Select queries 121–2
sorting records 70
SQL 53
SQL Server 2000 Desktop Engine 368
Structured Query Language see SQL
subforms 303–7

creating 303
moving fields on 306

switchboards 330–2, 337, 339

T
tab order 162, 323
Table Analyzer wizard 254–64

modifying results of 261
typographical errors and 263

Table wizard 25–30, 81
tables 18–19, 24–35, 81–119

answer table 36
creating 25
creating by entering data 31–2
functions of 25
joining 271–4, 285
multiple 249–80
naming 30

377

Index

telephone numbers 86
text boxes 63–4, 66, 203–7
time 91
TopValue 152–4
training 365
typographical errors 251

U
undo 33–4
update queries 125, 128

example 129–30
upsizing 367
URLs 94
user 8
user interface 329–40

building 332–8
design considerations 329–30, 339
designing 332

switchboards 330–1
User-Level Security Wizard 366
users, simultaneous 341

V
validation 109–10, 112, 194
Visual Basic 331, 364

W
watermark 327
wildcards 48–9, 124, 152
wizards 15

input masks 104
limitations of 15, 81
modifying results of 81

Z
zero length string 118–19

378

Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

